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High-temperature series are computed for a generalized three-dimensional Ising model with arbitrary poten-
tial. Three specific “improved” potentialésuppressing leading scaling correctipase selected by Monte
Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved
potentials, achieving high accuracy; our best estimatesyar&.23714), »=0.63002(23),0=0.10997),
7n=0.03644), B=0.326 48(18). By the same technique, the coefficients of the small-field expansion for the
effective potential(Helmholtz free energyare computed. These results are applied to the construction of
parametric representations of the critical equation of state. A systematic approximation scheme, based on a
global stationarity condition, is introducdthe lowest-order approximation reproduces the linear parametric
mode). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison
with other theoretical and experimental determinations of universal quantities is presented.
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[. INTRODUCTION of the transition. Nonanalytic correction terms to the leading

According to the universality hypothesis, critical phenom-power-law behavior, represented by noninteger poweits of
ena can be described by quantities that do not depend on thge related to the presence of irrelevant operators. For three-
microscopic details of a system, but only on global properdimensional Ising-like systems, the existence of leading cor-
ties such as the dimensionality and the symmetry of the ordetections with exponenmt = 0.5 is well established. In order to
parameter. Many three-dimensional systems characterized jptain precise estimates of the critical parameters, the ap-
short-range interactions and a scalar order paran@ieh as  proximants of the HT series should properly allow for the
density or uniaxial magnetizatipbelong to the Ising univer- confluent nonanalytic correctiod@—8]. The so-called inte-

sahtyhclass._ This Ilmplles_ Fhat the (;]rmcal ex?onelrllti, as welly approximant$9] can, in principle, allow for thentsee,
als o:[rherlunlversa (;qutantltllest,. argttﬁ sa:cne ora tt e?g mo .g., Ref.[10] for a review. However, they require long
€ls. Their precise determination IS Ineretore Important I Oq iag 1 detect nonleading effects, and in practice they need
der to test the universality hypothesis.

) T to be biased to work well. Analyses meant to effectively
The high-temperaturéhiT) expansion is one of the most allow for confluent corrections are generally based on biased
effective approaches to the study of critical phenomena: 9 y

Much work (even recentlyhas been devoted to the compu- approximan_ts where the value Gt and the first n_on_analytic
tation of HT series, especially fax-vector models and in ©€XPOnentA is given (see, e.g., Refd11-19). It is indeed
particular the Ising model. An important issue in the analysi€xPected that the leading nonanalytic correction is the domi-
of the HT series is related to the presence of nonanalytif@nt source of systematic error. _

corrections to the leading power-law behavior. For instance, An alternative approach to this problem is the construc-
according to the renormalization-group theésge, e.g., Ref. tion of a HT expansion where the dominant confluent cor-

[1]), the magnetic susceptibility should behave as rection is suppressed. If the leading nonanalytic terms are no
longer present in the expansion, the analysis technique based

x=Ct "(1+agt+ag A%+ --+agt*+a; 424 on integral approximants should become much more effec-

tive, since the main source of systematic error has been

+ootap it e, (1.)  eliminated. In order to obtain an improved high-temperature

(IHT) expansion, we may consider improved Hamiltonians
wheret=(T—T.)/T. is the reduced temperature. The lead-characterized by a vanishing coupling with the irrelevant op-
ing critical exponenty, and the correction exponents erator responsible for the leading scaling corrections. This
A,A,, ..., areuniversal, while the amplitudeS anda; ; are  idea has been pursued by Chen, Fisher, and Ni&elwho
not universal and should depend smoothly on any subsidiargtudied classes of two-parameter mod@dach as the bcc
parameter that may change, but does not affect the nature scalar double-Gaussian and Klauder mode®&ich models

interpolate between the spin-1/2 Ising model and the Gauss-

ian model, and they are all expected to belong to the Ising

*Electronic address: campo@mailbox.difi.unipi.it universality class. The authors of R¢g] showed that im-
"Electronic address: Andrea.Pelissetto@romadl.infn.it proved models with suppressed leading corrections to scaling
*Electronic address: rossi@mailbox.difi.unipi.it can be obtained by tuning the parametése also Refs.
$Electronic address: vicari@mailbox.difi.unipi.it [8,16]). This approach has been recently considered in the
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context of Monte Carlo simulatiorid 7—20, using lattice¢p*  lations using finite-size scaling techniques seem to provide
models. It is also worth mentioning the recent wgPi] of  the most efficient tool for this purpose. For comparison, in
Belohorec and Nickel in the context of dilute polymers, the case of the pureé” theory (\¢=0), our best estimate of
where a substantial improvement in the determination of th@ * from the HT expansion is consistent with the above-
critical exponentsy and o was achieved by simulating the entioned Monte Carlo resulfy =1.1Q(2), but it isaffected
two-parame.ter Domb-Joyce model. . by an uncertainty of about 10%ee Sec. I). So we decided
. We con_5|der _the class of sqalar_ models defined on th'?o follow the strategy of determining the improved Hamil-
simple cubic lattice by the Hamiltonian tonian by Monte Carlo simulations employing finite-size
scaling techniques. For thé* model, this work has been
H=—B2 didj+> V(D) (1.2 satisfactorily done by Hasenbus§0]. For the ¢® model
D ! with \g=1, we performed Monte Carlo simulations in order

where=1/T, (i,j) indicates nearest-neighbor sites,are {0 calculate\y , obtaininghj =1.90(4).

real variables, and/(¢?) is a generic potentialsatisfying The compan.son.of the re_sults obtained from the three

appropriate stability constraintsThe critical limit of these improved Hamiltonians considered strongly supports our

models is expected to belong to the Ising universality clas@orking hypothesis of the reduction of systematic errors in

(apart from special cases corresponding to multicriticatthe IHT estimates, and provides an estimate of the residual

pointy. Using the linked cluster expansion technique, weerrors due to the subleading confluent corrections to scaling.

calculated the high-temperature expansion to 20th order for The analysis of our 20th-order IHT series allows us to

an arbitrary potential, generalizing the existing expansion®btain very precise estimates of the critical exponents

for the standard Ising modédee, e.g., Ref13] for areview  and 7. Our estimates substantially improve previous deter-

of the existing HT calculationsin this work we will essen- minations by HT and other methods.

tially consider and present results for a potential of the form  \We extended our study to the small-field expansion of the

o 2 ) ) ) 3. effective potential, which is the Helmholtz free energy of the

V(@)= "+ ha(p"=1)"+Ne(¢°—1)% (1.3 model. This expansion can be parametrized in terms of the

such a potential will be assumed in the following, unlesszero-momentumn-pomt couplings gy, in the symmetric

otherwise stated. Within this family of potentials, improved phase. The analysis of the IHT series provides new results

Hamiltonians can be obtained by looking for values of the]cor the couplingsg, , and leads to interesting comparisons

arameters.. and -~ for which leading sealing corrections with the estimates from other approaches based on field
P 4 6~ 9 'ng theory and lattice techniques. Moreover, we improved the
are suppressed. In particular we may kegdixed and look

for th di lUe* of N, that gi . d knowledge of the universal critical low-momentum behavior
or the corresponding vaiue, of A4 that gIveS an Improved = ¢ e two-point function of the order parameter, which is
Hamiltonian. Notice that for generic choices of the Hamil-

X * _ " 7 relevant for critical scattering phenomena.
tonian\y may not exist. This is the case of t(N) ¢" gy exploiting the known analytic properties of the critical
theory with nearest-neighbor couplings on a cubic lattice inegyation of state, one may reconstruct the full critical equa-
the largeN limit, where it is impossible to find a positive tion of state from the small-field expansion of the effective
value of), achieving the suppression of the dominant scalpotential, which is related to the behavior of the equation of
ing corrections. Using the estimates of the leading scalingtate for small magnetization in the symmetric phase. This
correction amplitudes reported in R¢5], one can argue can pe achieved by using parametric representations imple-
that the same is true for finitd>3. As shown numerically menting in a rather simple way the known analytic properties
by Monte Carlo simulation$17-20, N exists in the case of the equation of state. Effective parametric representations
N=1, which is the single-component* model (i.e., the can be obtained by parametrizing the magnetizakiband
model presented above withg=0). By using finite-size the reduced temperatutén terms of two variable® and 6,
techniques, Hasenbusch obtained a precise estimat§ of setting M<R?¢, t=R(1— 6%, and HxR?%h(#). In this
A3 =1.10(2) [20]. In our work we will also consider the framework, following Guida and Zinn-Just23], one may
spin-1(or Blume-Capel Hamiltonian develop an approximation scheme based on truncations of
the Taylor expansion of the functioh(#) around #=0.
Knowing a given number of terms in the small-field expan-
sion of the effective potential, one can derive the same num-
ber of terms in the smak-expansion oh(#), with a depen-
where the variables; take the values &;1. In this case the dence on an arbitrary normalization paramete®ne can try
value ofD for which the leading scaling corrections are sup-to fix p so that this smalk expansion has the fastest possible
pressed iD* =0.641(8)[22]. convergence. We propose a prescription based on the global
From the point of view of the HT expansion technique, stationarity of the truncated equation of state with respect to
the main problem is the determination of the improvedthe arbitrary parametegs. This extends the stationarity con-
Hamiltonian. Once the improved Hamiltonian is available,dition of the linear modeli.e., the lowest-order nontrivial
the analysis of its HT series leads, as we shall see, to mucipproximation discussed in Refd.24—27. Using the IHT
cleaner and therefore reliable results. A precise estimate oksults fory, v and the first few coefficients of the small-
the parameters associated with an improved Hamiltonian ifield expansion of the effective potential, we constructed ap-
crucial in order to obtain a substantial improvement of theproximate representations of the full critical equation of
IHT results. As shown in Ref$17,20, Monte Carlo simu- state. From them we obtained accurate estimates of many

H=—,B<Z> s§+D2, 82, (1.4)
i i
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ratios of universal amplitudes. Varying the truncation order Il. IMPROVED HAMILTONIANS
of h(6), we observed a fast convergence, supporting our

arguments. , , _ proved” Hamiltonians, i.e., with models in which the lead-
For our readers’ convenience, we co!lectgd in Table XIIIing correction to scaling has a vanishifig practice very

a summary of all the results obtained in this paper. Theresma”) amplitude.

they can find new estimates of most of the universal quanti- 1 clarify the basic idea, let us consider a model with two

ties (exponents and ratios of amplitudestroduced in the  relevant operatoréthe thermal and the magnetic ohesd

literature to describe critical phenomena in three-gne irrelevant operator. If, x, and x are the associated

dimensional (3D) Ising-like systems. The only important nonlinear scaling fields, the singular part of the free energy

quantity for which we have not been able to give a goodr . has the scaling forri28]

estimate is the exponemt, which is related to the leading § Cdin A
scaling corrections. We mention that a precise estimate of Faind 726, ) = 7|4 . (k| 7] 7 Ml A%), (2.0

h ly in REZ0]: ©®=0.845(10). Ith
as been reported recently in REI0): »=0.845(10). It has here the functiorf .. depends on the phase of the model.

been obtained by a Monte Carlo study using a finite-size_. . L . ;
scaling method. éISVmce the operator associated wijthis irrelevant,A is posi-

. A . .
The paper is organized as follows. In Sec. Il we discussJEIVe and | 7|0 at the critical point. Therefore, we can

the main features of improved Hamiltonians from the poimexpand the free energy, obtaining

of view of the renormalization group. In Sec. Ill we describe o0

our Monte Carlo simulations and present the estimategiof ~ Feng(7,k,) = | 7|9 >, fpo o (k| 7]~ @27 M012) 0| 7|04,
for the potential1.3) with \g=1. Section IV is dedicated to n=0 2.2
the determination of the critical exponents from the IHT ex- '
pansion. We present estimates of all relevant critical expoThe presence of the irrelevant operator induces nonanalytic
nents (except forw), and compare our results with other corrections proportional tdr|™. Now, let us suppose that
theoretical approaches and experiments. In Sec. V we studyte Hamiltonian of our model depends on three parameters
the small-field expansion of the effective potential. Weh, and\, wherer is associated with the temperatuhds the
present estimates of the first few coefficients of the expanmagnetic field, and\ is an irrelevant parameter. For each
sion. We discuss the relevance of the determination of thgalue of X and forh=0, the theory has a critical point for
zero-momentum four-point renormalized coupling for field-r=r.(\). The nonlinear scaling fields, «, andu are ana-
theoretical approache¢Sec. V B. Section VI presents a lytic functions of the parameters appearing in the Hamil-
study of the low-momentum behavior of the two-point func- tonian, and therefore we can write

tion in the critical region. Estimates of the first few coeffi-

As discussed in the Introduction, we will work with “im-

cients of its universal low-momentum expansion are given. r=t+t?g;,(A\) +h’g,,(\) +O(t3,th?, hY), (2.3
In Sec. VII we study the critical equation of state, which 5 N
gives a description of the whole critical region, including the k=h[1+tgy,(N)+h7gs(N)+O(t5ths,h")], (2.4

low-temperature phase. Using the estimates of the critical

exponents and of the first few coefficients of the small-field ©=01,(\) +1d,, (M) +h?gs,(N)+O(t% th? h%),

expansion of the effective potential, the critical equation of 2.9

féi;engtrii?]?;gg?t\?ﬂ iTpllsyggcépS{F é'mwagegrzr;mme%ﬁrrer\’mheretEr—rc(x). _Substituting these expressions into Eq.
. : : 2.2), we see that, ify; ,(A) #0, the free energy has correc-

method, based on the global stationarity of the apprommat%onS of ordert Forﬂthe suscentibility in zero maanetic

equation of state. Relevance to te@xpansion is discussed field we obtain th.e exolicit formulgzg] y 9

in Sec. VIIC. In Sec. VII D we apply the results of Sec. P

VII B to the computation of universal ratios of amplitudes, % %

using as inputs the results of the IHT expansion. The results ) —t=v ', OO)tMAFnpgl-a > 0 (\)tma+n

are then compared with other theoretical estimates and with mn=0 """ mn=0"""

experimental determinations. For the sake of comparison, we w
also present results for the two-dimensional Ising model. n
: . . + Mt", 2.6
Many details of our calculations are reported in the Ap- nzo Xan(M) (2.6

pendices. Appendix A contains a detailed description of our

HT calculations, i.e., the list of the quantities we have con-where the contribution proportional t3~ ¢ stems from the
sidered and the description of the method we used to geneterms of ordeh? appearing in the expansion efandu, and

ate and analyze the HT series. We report many details antthe last term is the contribution of the regular part of the free
intermediate results so that the reader can judge the qualignergy. Notice that it is often assumed that the regular part of
of the results we will present. In Appendix B we present thethe free energy does not dependtonf this were the case,
notations for the critical amplitudes, and report the expreswe would have x3,(\)=0. However, for the two-
sions of the universal ratios of amplitudes in terms of thedimensional Ising model, one can prove rigorously thag
parametric representation of the critical equation of state. Ir#0[30,31], showing the incorrectness of this conjecture. For
Appendix C we discuss in more detail the approximationa discussion, see Rdf32].

scheme for the parametric representation of the equation of In many interesting instances, it is possible to cancel the
state based on stationarity. leading correction due to the irrelevant operator by choosing
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A=\* such thatg,,(A*)=0. In this caseu™~t1"4, so TABLE I. For several values of lattice sizeand forag=0, we

that no term of the formmM“, with n<m, will be present. report the values of the parameters used in the Monte Carlo simu-

In particular, the leading term proportional t& will not  1ation A, Brun, the number of Monte Carlo iteratiofd,, each

appear in the expansion. iteration consisting of a standard Swendsen-Wang update and of a
In general, other irrelevant operators will be present in thdietropolis sweep, and the estimate of the Binder param@tat

theory, and therefore we expect corrections proportiont to i‘h_l'lto' B_-?HS?S?QZ::‘- Tlhe reportzdtsrror @ 'Sd thet S‘ig‘ of

with_ p=ny+ n2A+EimiAi ) V\{hereAi are the exponents as- ta:r?t‘; ;r;\'ls‘andeﬂs(i)'s cal error, and the errors due to the uncer-

sociated with the additional irrelevant operators. ker\* e

the expansion will contain only terms with,=n.,.

It is important to note that by working with=\*, we Mun  Pun Nier Q
use a Hamiltonian such that the nonlinear scaling field 6 1.100  0.375 9x 10° 0.6237Q15+37+2)
vanishes at the critical point. This property is independent of 7 1.100  0.375 7810° 0.6238617+33+2)
the observable we are considering. Therefore, all quantitiesg 1.080 0.376 178 1¢° 0.6238912+26+3)

will be improved, in the sense that the leading correction to 12 1.105 0.375 308 10° 0.6238710+25+5)
scaling, proportional tat®, will vanish. We will call the
Hamiltonians with\ =\* “improved Hamiltonians.”

In order to apply this method in practice we need two
lIl. DETERMINATION OF THE IMPROVED ingredients: a precise determination 8f(\,) and an esti-

PARAMETERS mate of O*. _ .
Very precise estimates g8.(\,) can be obtained from

The Hamiltonian defined by Eq¢l.2) and (1.3 with A\ the analysis of the HT series of the susceptibiitywhich
=0 was considered in R€i20], where it was shown that the we have calculated t0(8%°). ForAg=0 and 1.6s\,<1.2
leading correction to scaling cancels %of =1.1Q2). Here  the values of3.(\,) can be interpolated by the polynomial
we will also consider the caskg=1, and determine the 5
corresponding\ using a method similar to the one dis-  Bc(A4)=0.40562043-0.00819008,—0.04626355}
cussed in Ref[17].

3

The idea is the following. Consider a renormalization- +0.01235674,=0.0000014. 3.6
group invariant observabl@ on a finite latticel and letO* |, particular, for A\,=1.10, we have B.(1.10)
be its value at the critical point, i.e., =0.3750973(14), to be compared with3.(1.10)

=0.3750966(4) of Ref[20]. For \g=1 and 1.8&1,;,<2.0

. .
OF=lim lim  O(B.A.L). 3. — as we shall see, this is the relevant interval — we have

L—2B—pBc(Ng)

— 2
The quantityO* is a universal number and therefore it will Bc(X4)=0.68612192-0.18274278,+0.02634688,,

be independent ok,. The standard scaling arguments pre- —0.001027183+0.0000018. (3.7
dict

) B . The second quantity we need is an observdbkich that

O(Bc(Ng) hg, L)~ O* +ag(Ag)L ™ “F+az(NgL "+ - O* can be computed with high precision. We have chosen
by ()L V2. -, (3.2 the Binder parameter
, , (m?)

where w=A/v, w,=A,/v, A, being the next-to-leading Q= —7, (3.8
correction-to-scaling exponent. Since fop=\} , a;(\}) (m?)
=ay(\;)=---=0, forA,~\j we can rewrite the previous \herem is the magnetization. A precise estimate@fwas
equation as obtained in Ref[17] by means of a large-scale simulation of

the spin-1 model. They report
O(BC()\4)1)\41L)~O*+()\4—)\Z)(a11|_7‘“+a21|_*2w p y p

fo b L (33 Q* =0.6239313+ 35+5), (3.9

_ where the error is given as the sum of three contributions: the
Now, suppose we know the exact val®, and let us define first is the statistical error; the second and the third account

A$(L) as the solution of the equation for corrections to scaling. We have tried to improve this
ot ot estimate by performing a high-precision Monte Carlo simu-
O(Bc(hg (L)), A g (L),L)=0O". (3.4 Ilation of the Hamiltoniar(1.2) for A\¢=0 and by computing

o ) Q for A,=1.10, which is the best estimate »} . We used
From Eq.(3.3 we obtain immediately the Brower-Tamayo algorithif85], each iteration consisting
. of a Swendsen-Wang update of the signgoind of a Me-
ALy =n% _bl()‘4) Lo—o2q ... (3.5 tropolis sweep. Since the Hamiltonigh2) is improved(i.e.,
4 4 ap the leading correction to scaling vanishese expect to be
able to obtain a reliable estimate from simulations on small
Sincew,>w, \"(L) converges ta.X asL—c. Forthe 3D lattices for which it is possible to accumulate a large statis-
Ising universality classp,=2w [33,34] and w=0.85[20]. tics. The results are reported in Table(The simulations
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TABLE Il. For several values of lattice sizeand forAg=1, we  that the correchj is slightly larger than our estimate. How-
report the values of the parameters used in the Monte Carlo simigyer, the quoted error should be large enough to include this
lation N 4 ryn, Brun» the number of Monte Carlo iteratioM,,, each systematic increase.
iteration F:onsisting of a standqrd Swendsen-Wang update and of a pg explained in the Introduction, the analysis of HT series
Metropolis sweep, and the estimate)df/(L), the solution of Eq. oy the purpose of determining universal quantities is sensi-
Ave to nonanalytic scaling corrections. As we will discuss
below, one can use this fact to obtain a rough estimate of the
optimal value of\.

error, and the errors due to the uncertaintyQf and B.(\).

. eff
L Naun Brun Nier (L) Consider, for example, the zero-momentum four-point
6 1.900 0.427 108 1¢° 1.9159+19+1) coupling constang, defined by
7 1.900 0.427 252 10° 1.8946+21+2)
Xa
9 1.920 0425  21410°  1.8979+25+3) gu=— b (3.12
12 1.920 0.425 29410° 1.9049+32+6) X°§

wherey, £, andy, are, respectively, the magnetic suscep-

were performed before the appearance of Re0] and the tibility, the second-moment correlation length, and the zero-
generation of the HT series, when only a very approximaté'?c_’me”tum four-pom_t connectgd correlation funct(m*efl-_
expression fon? existed. Therefore, the runs were not made™itions can be found in Appendix A1We have chosen this

at the correct values of, and B.. The values reported in observable because it appears to be affected by large correc-

Table | have been obtained from the Monte Carlo data b ions to scaling, but the method can be applied to any uni-
means of a standard reweighting technigjue ersal quantity. From the discussion of Sec. Il, we have for
There are three different sources of error: we report thd?— Be
statistical error, the variation of the estimate of the Binder * A
' =gy+c — +oen, 3.1
parameter when\, varies within the interval 1.081.12 94(B) =02+ Cal(Be—B) 313

(due to corrections to scaling of order “, which are not \yhereg* is a universal constant, arg} is a nonuniversal
completely suppiessed, since the value usediipis not  amplitude depending on the Hamiltonian. For improved
exactly equal to\; ), and the variation oQ when 3. varies  models, as discussed befooa,=0. The traditional methods
within one error bar. The values &f that we use are rela- of analysis, e.g., those based on P&B@&) and Dlog-Pade
tively small (L=12) and one could fear that next-to-leading (DPA) approximants, are unable to handle an asymptotic be-
corrections still give a non-negligible systematic deviation.havior such ag3.13 unlessA is an integer number, thus
Our data do not show any evidence of such an effect, and theading to a systematic error. Integral approximants allow for
estimates for different values af are consistent. Using the nonanalytic scaling corrections but, as already said, with the

estimate obtained fdr =12, we get the final result series of moderate length available today, they need to be
biased to give correct results: without any bias they give
Q*=0.6238832 (3.10  estimates that are similar to those of PA’s and DPE'4].

At present the only analyses that are able to effectively take
(the uncertainty is obtained assuming independence of sysato account the confluent corrections use biased approxi-
tematic and statistical errggsvhich is in agreement with the mants, fixing the value of3, and of the first nonanalytic
estimate(3.9) with a slightly smaller error bar. exponentA (see, e.g., Ref§10-12,14,15,3pfor a discus-
We have next determinexi; for the model with Hamil-  sion of this issue and for a presentation of the different meth-
tonian (1.2) andAg=1 using the method presented above.ods used in the literature The method we use has been
Estimates oki“(L) are reported in Table Il, from which we proposed in Ref{11] and generalized in Ref12]. The idea
conclude is to perform a Roskies transfor(RT), i.e., the change of
variables
A3 =1.904). (3.11 B A
Note that the last three points show a small upward trend 2=1=(A= BB (3.19
which, although consistent with a statistical effect, could be &o that the nonanalytic terms j.— 8 become analytic in
systematic increase due to the corrections of otdet2*® 1z Therefore, the analysis of the resulting series by means
or could be due to the fact th&®* is only approximately of standard approximants should give correct results. For the
known. To exclude the latter case, we have computegnodels we are considering, the exponaris approximately
AS™ (L), the solutions of Eq(3.4) with the rhs replaced by 1/2[e.g., Ref[20] reportsA =0.5326)]; for simplicity, we
Q* +0q, 0q being the error olQ*. If the increase is asso- have used the transformati¢8.14) with A=1/2.
ciated with the uncertainty o®*, we should observe that We have analyzed the HT expansiongaffor the model
)\iffi(L) have opposite trends, one increasing, the other dewith Hamiltonian(1.2) and\g=0 for several values of,.
creasing. In the present caﬁéf;(L) are both increasing, We computed PA’s, DPA’s, and first-order integi@h1)
thereby excluding the possibility that this effect is due to theapproximants of the series jB and of its RT inz. In Fig. 1
uncertainty ofQ* . With the present statistical errors we can- we plot the results as a function bf, ! The reported errors
not distinguish between the first two possibilities: we haveare related to the spread of the results obtained from the
considered as our final estimate the average of the resultlifferent approximants; see Appendix A4 for details. The
obtained forlL.=7,9,12, but we cannot exclude the possibility estimates obtained from the RT’ed series are independent of
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' ' T analysis of Nickel and Rehrl6] using a different method
: de;“‘ gave significantly different estimates wf .
g IV. CRITICAL EXPONENTS

* The analysis in Sec. Ill is encouraging and supports our
) basic assumption that the systematic error due to confluent
L] singularities is largely reduced when analyzing IHT expan-
1 I l sions. To further check this hypothesis we will compare re-
I S T R sults obtained from different improved Hamiltonians. This
will provide an estimate of the remaining systematic error
23+ * 8 which is not covered by the spread of the results from dif-
ferent approximants.
{ The definition of the quantities we have considered and a
detailed description of the method we used to generate and
" ‘ , , , analyze the HT series is presented in Appendix A.
00 05 10 Ls 20 25 We computedB. and y from the analysis of the HT ex-
1/hy pansion of the magnetic susceptibility. We considered inte-
gral approximants of first, second, and third order. After a
careful analysis we preferred the second-order integral ap-

form (RT) for the pureg* lattice model. The dashed line marks the proximants(IA2’s), which turned out to be the most stable:

more precise estimatevith its erro) we derived from the analysis MOSt of the results we present in this section and in the
of the IHT expansion. related Appendix A 3 have been obtained by using IA2’s. As

a further check of the effectiveness of the approximants em-
ployed, we made use of the fact thatand£2) must present

X4 Within error bars, giving the estimagg ~23.5, in agree- an antiferromagnetic singularity ag'=— g, of the form
ment with previous analyses of the HT expansion of thd37]

Ising model on various lattices using the RT or other types of B af 1o

biased approximantgl4,15,3§ (in Sec. VB we will im- X=CotCai(B=Bc)™ "+, 4.1
{)r\rgggetr?clj?anecsetlg]fitﬁet;)elzsirl]ta:‘lr):nzrl:?h(tah\?a:S;\q?é(lzz?lij??;ﬁ where « is the specific heat exponert, are constants, and
cates that the RT is effectively able to take into account thethe ellipses represent higher-order singular or analytic cor-

nonanalytic behavio(3.13. On the other hand, the analysis rect|0_ns.hWe venfl_ed the emztentl:e |0f a:stngularlty_/ia% d
of the series inB gives results that vary with, more than — B In the approximants, and calculated the associated ex-

; - . ponent. We also considered approximants that were biased
the spread of the approximants: for instance, the analysis . R "
the sgries of the stggdard Ising model correspondin)gyto y requiring the presence of two symmetric singularities at
' 4 B=* B. [8]; the results obtained are consistent with the pre-

= i I 0,
>, gives results that d|ff_er by more than 5% from_ the fiicted behaviof4.1) (see Appendix A 3 and related Tables
estimate quoted above, while the spread of the approximants . .
The exponentr was obtained from the series of the

is much smaller. Clearly there is a large systematic error. It is .
important to note that the direct analysis and the RT onesecond moment correlation length

coincide when 1.&\,=<1.2, i.e., in the region in which the

g4

FIG. 1. Comparison of the determination gf, (plotted vs.
1/\,) from HT series withouidirect and with the Roskies trans-

my
leading nonanalytic corrections are small. This fact confirms §2=6—~(ﬂc—ﬂ)2”. (4.2)
our claim that the observed discrepancies are an effect of the X
confluent corrections. wherem; are the moments of the two-point function. We

The results presented above can be used to obtain an &gflowed the procedure suggested in R&8], i.e., we used
timate of\} from the HT series alonex} should fall in the  the estimate 0f3. obtained fromy to bias the analysis Gf.
interval in which the direct analysis gives results compatibleror this purpose we used IA’s biased by fixiBg. We also
with those obtained from the Roskies-transformed series. Agonsidered approximants biased by forcing a pair of singu-

we already mentioned, fokg=0 we obtain\}=1.1(1), larities at=+ 3.

while for A\g=1 we get\; =1.9(1). Thelatter estimate was In Table 11l we report the results obtained for the Hamil-
indeed the starting point of our Monte Carlo simulation. Wetonians (1.2) with A g=0, A4,=1.10 and withAg=1, N\,
have also tried to estimate; in more direct ways, but all =1.90, and for the Hamiltoniafi.4) with D=0.641.

methods we tried were even less precise. The errors are given as a sum of two terms: the first one is

A similar method for the determination of the improved computed from the spread of the approximants; the second
Hamiltonian from the HT series was presented in R8f.  one is related to the uncertainty of the valuexgf andD*,
The optimal value of the paramet@alledy in Ref.[8]) was  and it is evaluated by changing, in the range 1.081.12
determined comparing the results for the critical pggaty) for Ag=0 and 1.86-1.94 for \¢=1, andD in the range
obtained using IAl’'s and DPA'sy* is estimated from the 0.633-0.649 for the spin-1 model. There is good agreement
value at which DPA and |IAl estimates gf(y) agree be- among the estimates of and v obtained from the three
tween each other. It should be noticed that, for the doubleimproved Hamiltonians considered. This is an important
Gaussian model, partial differential approximants and a latecheck of our working hypothesis, i.e., that systematic errors
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TABLE IIl. Our final estimates ofy, v, , ando. The error is reported as a sum of two terms: the first
one is related to the spread of the approximants; the second one is related to the uncertainty of the value of

N, andD*.
0% v n o
Ae=0 1.2373224+16) 0.6301%13+12) 0.03643+1) 0.021313+1)
Ae=1 1.2371226+31) 0.6300313+23) 0.03633+2) 0.021314+2)
spin-1 1.2368(B0+12) 0.6299@15+8) 0.03663+1) 0.020210+1)

due to confluent corrections are largely reduced. This willcal point they are depressed with respect to spherical
also be confirmed by the results for the universal ratios ofnoments carrying the same naive physical dimensions by a
amplitudes. We determine our final estimates by combinindactor ¢~ °, wherep is a universal critical exponent. From a
the results of the three improved Hamiltonians: the value idield-theoretical point of view, space anisotropy is due to
the weighted average of the three results, and the error is theon-rotationally-invariant irrelevant operators in the effec-

smallest of the three errors. We obtain fpand v tive Hamiltonian, whose presence depends essentially on the
symmetries of the physical system, or of the lattice formula-
y=1.23714), (4.3 tion. In Table lll we report the results far=2—p as ob-
tained by analyses of the first nonspherical momgcftsEqg.
v=0.6300223), (4.4  (A2)] using the CPRM. The exponeatturns out to be very
small:

and by the hyperscaling relatian=2—3v
0=0.020812), (4.9
a=0.10997). (4.5
i . andp=1.9792(12).
In Appendix A3 we also report some further checks using |y Taple IV we compare our results with some of the most
the Monte Carlo estimate @, reported in Ref[20] to bias  ecent estimates of the critical exponentsy, 7, a, and 3.

the analysis of the series. The results are perfectly consistenhe table should give an overview of the state of the art for
We mention that from the analysis of the antiferromagnetiGne yarious approaches.

singularity [cf. Eq. (4.1)], we obtain the estimatex Let us first note the good agreement of our IHT estimates
=0.105(10), which is consistent with res@#.5) obtained  ith the very precise results of the recent Monte C&I€)
assuming hyperscaling. simulations of Refs[17,19,2Q. The small difference with

From the results fory and », we can obtainy by the  the HT estimates of Ref13] (obtained from the standard
scaling relationy=(2—»)v. This gives 7=0.0364(10), |sing model may be explained by the difficulty of control-
where the error is estimated by considering the erroryon |ing the effects of the confluent singularities, and by a sys-
and v as independent, which is of course not true. We canematic error induced by the uncertainty on the external input
obtain an estimate of; with a smaller, yet reliable, error parametersg, andA) that are used in their biased analysis.
using the so-called critical-point renormalization methodThe estimates of Ref$5,7,8,14 have been obtained from a
(CPRM) (see Ref[9] and references therginVe obtain the  HT analysis of two families of models, the Klauder and the
results reported in Table IlI, with considerably smaller er-double-Gaussian models, on the bcc lattice. The results of

rors. Our final estimate is these analyses are in good agreement with our IHT estimates,
B especially those by Nickel and ReHr6]. The HT series for
7=0.03644). (48 the double-Gaussian model were analyzed also in F&f.

where a higher estimate gfwas obtained. As pointed out in
Ref.[16], the discrepancy is essentially due to the use of a
higher estimate of the improvement parametérwith re-

Moreover, using the scaling relations we obtain

5= 2:4.789322), (4.7)  spect to that used in Ref16] (see the discussion at the end
1+7 of Sec. Ill). Refs.[8,16] also report estimates af obtained

by analyzing the singularity of the susceptibility at the anti-

14 i iti i i i-

5= §(1+ 7)=0.3264818) 4.9 1;eurirt(()ar.nagnet|c critical point. The result agrees with our esti

The agreement with the field-theoretical calculations is,

(the error onB has been estimated by considering the erroroverall, good. The slightly larger result for obtained in the
of v and » as independept analyses of Refd44,47 [usingO(g’) series[46,50] may

Finally, we consider the universal critical exponent, de-be due to an underestimate of the systematic error due to the
scribing how the spatial anisotropy, which is present innonanalyticity of the Callan-Symanzig function. Similar
physical systems with cubic symmet(g.g., uniaxial mag- results have been obtained by Kleinert, who resummed the
net9, vanishes when approaching the rotationally invariantO(g’) expansion by a variational meth@ds], still neglect-
fixed point[39]. For this class of systems the two-point func- ing confluent singularities at the infrared-stable fixed point.
tion G(x) is not rotationally invariant. Therefore, nonspheri- We shall return to this point later. A better agreement is
cal moments are, in general, nonvanishing, but near the critfound with the analysis of thd=3 g-expansion performed
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TABLE IV. Theoretical estimates of critical exponents. See text for explanation of symbols in the first
column. For values marked with an asterisk, the error is not quoted explicitly in the reference.

y v 7 a B
IHT 1.23714) 0.6300223) 0.03644) 0.10997)  0.3264818)
HT (so [13] 1.238810) 0.63158)
HT (bco [13] 1.23846) 0.63085)
HT [16] 1.2372) 0.630G15) 0.03547) 0.112)
HT [38] 1.2393) 0.632°3002
HT [8] 1.23954) 0.6321) 0.1057)
HT [7] 1.23786) 0.6311530)
HT [5] 1.238515)
HT [4] 1.238525) 0.630515)
MC [20] 1.236711) 0.62967) 0.03589)
MC [17] 0.62985) 0.03668)
MC [19] 0.629410) 0.037412)
MC [40] 0.630810)
MC [41] 0.32696)
MC [42] 0.6251) 0.0256)
MC [43] 1.2372) 0.63018) 0.0373) 0.1102) 0.326710)
€ expliee [44] 1.235850) 0.629G25) 0.036a50) 0.325725)
e explsc [44] 1.238G50) 0.630525) 0.036550) 0.326515)
e explsc [14] 1.2405) 0.6313)
d=3 g exp.[44] 1.239613) 0.630413) 0.033525) 0.1094) 0.325814)
d=3 g exp.[45] 1.241* 0.6305" 0.034710)
d=3 g exp.[46] 1.23786+18)  0.63015+11)  0.03539+6)
d=3 g exp.[47] 1.240515) 0.630015) 0.0323)
ERG [48] 0.61814) 0.054*
ERG [49] 1.247 0.638* 0.045*

by Murray and Nickel, who allow for a more general after 1990. It is not a complete list of the published results,
nonanalytic behavior of thg function[46]. In Table IV, we  but it may be useful to get an overview of the experimental
quote the results of Ref46] with two erros: the first one is state of the art.
the resummation error, and the second one takes into account Even if the systems studied are quite different, the results
the uncertainty ofy*, which is estimated to be-0.01. The substantially agree, although, examining them in greater de-
results of thee expansion were obtained from t@(e®) tail, as already observed in Rd#3], one can find small
series calculated in Ref§51,52. We report estimates ob- discrepancies. Moreover, they substantially agree with the
tained by performing standard analygdsnoted as “freej  theoretical predictions discussed above, confirming the fact
and constrained analysgs3] (denoted by BEthat incorpo- that all these transitions are in the Ising universality class. It
rate the knowledge of the exact two-dimensional valuesshould also be noted that the experimental results are less
Both are essentially consistent with our IHT estimates, buaccurate than the theoretical estimates.
present a significantly larger uncertainty. In Table IV we also
report the results obtained by approximately solving the ex-
act renormalization-group equatidERG); they seem to be
much less precise. A more complete list of references per- A. Small-field expansion of the effective potential
taining to the theoretical determination of the critical expo- in the high-temperature phase
nents can be founc_i In Refi4]. Concerning the exponent The effective potentialHelmholtz free energyis related
related to the rotational symmetry, the IHT results representt0 the(Gibbs free energy of the model. IndeedNf=( ) is
a substantial improvement of the estimates obtained by varky . aanetization anﬂgi/he maanetic field one defines
ous approachedT and field theory presented in Ref.39]. 9 9 '

Experimental results have been obtained by studying the 1
liquid-vapor transition in simple fluids, and the different }“(M)=MH—V InZ(H), (5.0
critical transitions in multicomponent fluid mixtures, uniaxial
antiferromagnetic materials, and micellar systems. Many re-
cent estimates can be found in R€#43,54,59. In Table V' whereZ(H) is the partition function and the dependence on
we report some experimental results, most of them publishethe temperature is always understood in the notation.

V. THE EFFECTIVE POTENTIAL
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TABLE V. Experimental estimates of critical exponents. LV denotes the liquid-vapor transition in simple
fluids, BM refers to a binary fluid mixture, MS to a uniaxial magnetic system, and MI to a micellar system.

Ref. y v 7 a B
LV [56] 0.1105°392%0
[57] 0.107%54)
[58] 0.108423)
[59] 0.1111) 0.3242)
[60] 0.3412)
[61] 0.0426)
[62] 1.23310) 0.3272)
BM [63] 0.10411)
[64] 1.093)
[65] 1.2605) 0.64(2)
[66] 1.241) 0.60618) 0.07744) 0.31914)
[67] 0.1058)
[68] 0.3245), 0.3292)
[69] 0.3294), 0.3332)
[70] 0.6106)
[71] 0.33630)
[72] 1.22839) 0.6288) 0.030Q15)
MS [73] 1.252) 0.64(1)
[74] 0.1154) 0.3316)
[75] 0.11(3)
[76] 0.3252)
[77] 0.11(3)
(78] 1.252) 0.31515)
MI [79] 0.348)
[80] 1.143) 0.602)
[81] 1.21613) 0.62313) 0.0394)
[82] 1.2377) 0.63Q12)
[83] 1.252) 0.631)
[84] 1.1711) 0.654)
The global minimum of the effective potential determines , £t H=0)?M(t,H)?
the value of the order parameter which characterizes the = Y(LH=0) , (5.3

phase of the model. In the high-temperature or symmetric
phase, the minimum is unique and located/lat 0. Accord-  wheret is the reduced temperature, one may write
ing to the Ginzburg-Landau theory, as the temperature de-

creases below the critical value, the effective potential takes AF= Emz@z+ > md-id-2)
a double-well shape. The order parameter does not vanish 2 =

anymore and the system is in the low-temperature or brokeg

Gproas 69
erem=1/¢, g; are functions ot only, andd is the space
imension. In field theoryp is the expectation value of the
zero-momentum renormalized field. For:0 the quantities
gzj approach universal constargtshich we indicate with the
same symbogl that represent the zero-momentum-fiint
renormalized coupling constants. By performing a further
rescaling

phase. Actually, in the broken phase the double-well shape i
not correct because the effective potential must be conve
[85]. In this phase it should present a flat region around the
origin.

In the high-temperature phase the effective potential ad-
mits an expansion around =0:

m(d-2)/2

AF=FM)—F0)= E(ZW M2, (5.2 =

z (5.5

in Eq. (5.4), the free energy can be written as

d

- _ . m
The coefficients a;; can be expressed in terms of AF— g_ A2). (5.6
4

renormalization-group invariant quantities. Introducing a

renormalized magnetization
where
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B. Four-point zero-momentum renormalized coupling

1 1 1 :
T2, ~ 4 2]
A2) 2 * 4% +123 (2))! f2127 (5.7 The four-point couplingg=g, plays an important role in

the field-theoretic perturbative expansion at fixed dimension
and [87], which provides an accurate description of the critical
region in the symmetric phase. In this approach, any univer-
sal quantity is obtained from a series in powersgf{g
1 j=3. (5.8 expansiol, which is then resummed and evaluated at the
94 fixed-point value ofg, g* (see, e.g., Refs[47,50). The

_ theory is renormalized at zero momentum by requiring
One can show that<t~#M, and that the equation of state

can be written in the form I@(p)=z"YM2+p?+0(pH], (5.17

Oy
Foj=—"—r

55 A(2) '*)(0,0,0,0=2"2Mg. (5.189

oct 7z (5.9

When M—0 the couplingg is driven toward an infrared-
The effective potential (M) admits a power-series ex- Stable zerog” of the corresponding Callan-Symanzj

pansion also near the coexistence curve, i.e.tfof and function
H=0. If Mg=limy_o+M(H), for M>My (i.e., for H=0) a9
we have B@=M_—| . (5.19
oM GoA
0

1 .
— — = E — . — J
OF=FM)=FMo) = j! 3j(M—=Mo)'. (5.10 In this context a rescaled coupling is usually introdutssk,

e.g., Ref[1]):
In terms of the renormalized magnetizatiprwe can rewrite 3
1 . 1 _ ~ 1679 (5.20
0F=5mP (9= )+ 2, mID22gr (o gg)l,
=3 a (5.11) An important issue in this field-theoretical approach
' concerns the analytic properties 8{g), which are relevant

wherem=1/¢~ and ¢~ is the second-moment correlation 0F the resummation of theg expansion. General

length defined in the low-temperature phase. Fol0~, the renormalization-group arguments predict a nonanalytic be-

; o X
quantitiesg; approach universal constants that represent th?avIor of 3(g) atg=g™ [87]. One expects a behavior of the

low-temperature zero-momentuj¥point renormalized cou- orm [2,88]
\F;J:an?nfrgréitc?er][?é]A simpler parametrization can be obtained 'f,B(g) = —w(g*—g)+by(g* —g)%+- - - +cy(gF —g) A

+oeddy(gF —g)t2 /A (5.20)

c
i

(5.12 (A=wv and A, are scaling correction exponentsn the
framework of the 1IN expansion of O) ¢* models, the

so that analysis[14] of the next-to-leading order of the Callan-
SymanzikB function, calculated in Ref89], shows explic-
m itly the presence of confluent singularities of the fais21).

oF= WB(U)’ (5.13 In the fixed-dimension field-theoretical approach, a pre-

cise determination of* is crucial, since the critical expo-

nents are obtained by evaluating appropriagtesummed

£l=

[=X

where anomalous dimensions gt. The resummation of thg ex-
pansion is usually performed following the Le Guillou-Zinn-
w2= [im lim %{ (5.14  Justin(LZ) procedurg47], which assumes the analyticity of
T—Tg-H—0 the B function. The presence of confluent singularities may
cause a slow convergence to the correct fixed-point value,
The scaling functiorB(u) has the following expansion: leading to an underestimate of the uncertainty derived from
stability criteria.
1 5 1 : We have computed* =g from our IHT series by cal-
B(u)=35(u-1) +2‘3 j_!Vi(u_l)" (519 culating the critical limit of the quantitg, defined in Eq.
: (3.12. A description of our analysis can be found in Appen-
where dix A4. The results are reported in Table VI. We find good

agreement among the results of the three improved Hamilto-
_ nians, which lead to our final estimate:

Vit (.19 g*=23.494), g*=1.4022). (5.22
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TABLE VI. Results forgj , rg, g, I'1o, C, andcg derived from the analysis of the IHT seriésee
Appendix A). The error is reported as a sum of two terms: the first one is related to the spread of the
approximants; the second one is related to the uncertainty of the vaiig ahdD*.

g re re o 10%c, 10%c,
N=0 23.49916+20) 2.0517+2) 2.235+4) —14(4) —3.5827+6) 0.0856)
Ne=1 23.49121+40) 2.0505+4) 2.235+6) —13(5) —3.5747+20) 0.0864)
spin-1 23.48718+20) 2.0462+3) 2.345+3) —8(25) —3.56811+4) 0.0904)

Table VIl presents a selection of estimategbfobtained estimateg* =23.41(24)[i.e., g* =1.397(14)], which is in
by different approaches. agreement with our IHT estimate. In R¢82] a finite-size

The HT estimates of Ref$14,15,36 were obtained by scaling technique is used to obtain data for large correlation
using the RT or appropriate biased approximants in order téengths, then the estimate gf is extracted by a fit taking
handle the leading confluent correction. The larger result ofnto account the leading scaling correction. The Monte Carlo
Ref.[96] could be explained by an effect of the scaling cor-estimates of Ref§94,95 were larger because the effects of
rections. Field-theoretical estimates are reasonably consiscaling corrections were neglected, as already observed in
tent, especially those obtained from a constrained analysis @tef.[14]. A more complete list of references regarding this
the O(e*) e expansion[14]. In the d=3 g-expansion ap- issue can be found in Ref14].
proach,g* is determined from the zero @f(g) after resum-
ming its availableO(g’) series. The results obtained using
the LZ resummation methddi4] show a slight discrepancy _ ) ]
from our IHT estimates. This difference can explain the ap- T0 compute the HT series of the effective-potential pa-
parent discrepancy found in the determinationyofindeed, ~rameters; defined in Eq(5.8), we rewrite theﬂj in terms of
the sensitivity ofy to g*, quantified in Ref[44] through the zero-momentum connected-goint Green’s functions

C. Higher-order zero-momentum renormalized couplings

dy/dg*=0.18, tells us that changing the value gif from X2j 85
1.411[which is the value obtained from the zero®fg)] to XoX2
1.402 shiftsy from 1.2396 to 1.2380, which is much closer re=10——5-, (5.23
to the IHT estimatey=1.23714). Similarly for v, using X4
dv/dg* =0.11[44], v would change from 0.6304 to 0.6294, 2
which is quite acceptable, since a residual uncertainty due to rg=280-5 6X2 +%' (5.24
the resummation of¥/(g) is still present. The more general X4 X4
analys_is of theg expansion of Ref[46] leads to a smaller
valueg* = 1.40, with an uncertainty estimated by the authors 6X2 x5 eX3  X10Xs
to be about 1%. In Table VII we also report estimates ob- 1= 15400-462 p: +126XX +12(f(YX3 -
4 4 4 Xa

tained by approximately solving the exact renormalization
group equatiorj49,48 (ERG), and from a dimensional ex- (5.29
pansion of the Green’s functions aroude: 0 [91] (d exp).
Concerning Monte CarléMC) results, we mention that the
result of Ref.[90] has been obtained by studying the prob-
ability distribution of the average magnetizatigsee also
Ref. [98] for a work employing a similar approachThe

etc. Details of the analysis of the series are reported in Ap-
pendix A 4. Combining the results reported in Table VI, we
obtain the following estimates:

other estimates have been obtained from fits to data in the re=2.0485), (526
neighborhood of3.. In Ref.[18] Monte Carlo simulations

were performed using the Hamiltonigh.2) with A\g=0 and rg=2.288), (5.27
N,=1, which is close to its optimal value. A fit to the data of

04, kindly made available to us by the authors, gives the rio=—134). (5.28

TABLE VII. Estimates ofg*=3g*/(167). (so and (bcd in the HT estimates of Ref15] denote simple cubic and bcc lattice,
respectively. For values marked with an asterisk, the error is not quoted explicitly in the reference.

IHT HT € exp. d=3 g exp. MC d exp. ERG
1.4022) 1.4087) (so [15] 1.3978) [14] 1.4114) [44] 1.393) [90] 1.41214) [91] 1.2321) [48]
1.4076) (bco) [15] 1.391* [44] 1.40* [46] 1.40812) [92] 1.72* [49]
1.4069) [14] 1.415" [93] 1.493) [94]
1.4146) [36] 1.4165) [47) 1.46212) [95]

1.4599) [96]
1.429) [97]
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TABLE VIII. Estimates ofr; . For the references reporting only estimateggf(see Refs[90,95,97),
the errors we quote for,; have been calculated by considering the estimateg,pfs uncorrelated. For
values marked with an asterisk, the error is not quoted explicitly in the reference.

IHT HT € exp. d=3 g exp. MC ERG

re 20485  1.996)[36]  2.05811)[99] 2.0538)[44] 2.7223)[90] 2.06436) [48]
2.15718) [96]  2.1212) [44]  2.060° [93]  3.3711) [92]  1.92* [49]

2.259) [100] 3.26(26) [95]
2.5(05) [97]
re 2.298) 2.7(4) [36] 2.4828)[99]  2.47(25) [44] 2.475) [48]
2.4230) [44] 2.18* [49]
ro  —134)  —4(2) [36] —20(15) [99]  —25(18) [44] —18(4) [48]

—12.01.1) [44]

From the results for,; we can obtain estimates of the cou- 5
plings G(k)~

wart 6.2

— N2 —

96=07T6=11305), .29 the cross section fok—0 (forward scatteringdiverges as

T—T.. When strictly at criticality, Eq(6.2) holds for all

k<A, whereA is a generic cutoff related to the microscopic

A structure of the statistical system, e.g., the inverse lattice

910=9"T10= ~4.01.2 X 1C°. (53D gpacing in the case of lattice models. In the vicinity of the

, critical point, where the relevant correlation lengtls large

In the literature several approaches have been used for thg finite, the behaviof6.2) occurs forA >k 1/£. At low

determination of the couplingg,;. Table VIII presents a momentumk< 1/¢, experiments show th&(x) is well ap-

9s=0%rg=2.9611) X 10%, (5.30

review of the available estimates of, rg, andr . _ proximated by a Gaussigi®rnstein-Zernikg behavior,
We also mention the estimatg,= —10(2) that we will
obtain in Sec. VII by studying the equation of state. The G(0) K2

agreement with the field-theoretic calculations based o the (6.3
expansiorf44,99 and on thed=3 g expansior{44] is good.
Precise estimates of; have also been obtained in Rp48]
(see also Ref49]) by ERG, although the estimate gf by
the same method is not as good. Additional results have be
obtained from HT expansion$6,96,97 and Monte Carlo

simulations[90,95 of the Ising model. The Monte Carlo

— =1+ —,
G(k) M?

where M ~1/¢ is a mass scale defined at zero momentum
(for a general discussion, see, e.g., R&D1]). Corrections

&8 Eq. (6.3 are present, and reflect, once more, the non-
Gaussian nature of the Wilson-Fisher fixed point. The above-

) mentioned experimental observations, confirmed by theoret-
results do not agree with the results of other approache§ca| studies[39,103, show that they are small. In the

especially those of Ref$92,95, which are obtained using  16wing we will improve the determination of the critical

finite-size scaling techniques. But one should consider th'ﬁmo-point function at low momentum using IHT series
difficulty of such calculations due to the subtractions that order to study the low-momentum universal cr.itical

must be performed to compute the irreducible Co"elatiorbehavior of the two-point functio®(x) ={ $(x) $(0)), we
functions. A more complete list of references regarding thisconsider the scaling function '
issue can be found in Ref23,44,99.

9(y)=xIG(k), y=KIM?, (6.4
VI. THE TWO-POINT FUNCTION
N ] ) ) ~ (M=1/¢ and ¢ is the second-moment correlation lengih
The critical behavior of the two-point correlation function the critical limit k,M —0 with y fixed. The scaling function

G(x) of the order parameter is relevant to the description ob(y) can be expanded in powers paroundy=0:
critical scattering phenomena, which can be observed in

many experiments, such as light and x-ray scattering in flu- * ,

ids, magnets, etc. In the Born approximation the cross sec- g(y)=1+y+2 cy'. (6.5
tion I'y; for particles of incoming momentump, and outgo- =2
ing momentump; is proportional to the componeikt= p¢

. Other important quantities which characterize the low-
—p; of the Fourier transform o6(x): P d

momentum behavior af(y) are the critical limit of the ra-
- tios
It G(ps—pi). (6.1
Su=M3IM?, (6.6
As a consequence of the critical behavior of the two-point
function G(x) at T, S;=xM?Z g, (6.7)
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TABLE IX. ¢; andS,—1 obtained fromO(€®) series: uncon-
strained analysisunc) and analyses constrained in dimensiahs
=1,2.

unc. d=1 d=2 d=1,2
104(Sy—1) —4.410 -3.398) —3.35) —3.2436)
10%c, —4.309) -3.28) -3.34) —3.3021)
10°c, 1.1327) 0.8422) 0.7617)  0.6910)
10°c, —-0.5013 -0.371100 -0.328) —0.275)

whereM g, (the mass gap of the thegrgnd Z,,, determine
the long-distance behavior of the two-point function:

G(x)~ Z—e"‘"gaﬂx‘

a7lx] (6.9

The critical limits of Sy, and S, are related to the negative

zeroy, of g(y) closest to the origin by

SM:_yO! (69)

_99(y)

oy (6.10

Y=Yo

The coefficients; can be related to the critical limit of ap-

propriate dimensionless ratios of spherical moments @)
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report the results of constrained analyses of @) e
expansion ofc; and Sy—1, using exact results ird
=2,1 (Sy=1 andc;=0 in d=1; two-dimensional values
will be reported in Table Xl and following the method of
Ref.[14].

Since the constants are of ordeO(€?), we analyzed the
O(e€) series forc; /2. Errors are indicative, since the series
are short. In Table X we compare the estimates obtained by
various approaches: they all agree within the quoted errors.

As already observed in Ref39], the coefficients show
the pattern

Ci<<Ci_ 1<+ -<Cyp<kl for i=3. (6.19
Therefore, a few terms of the expansiorgdy) in powers of
y should be a good approximation in a relatively large region
aroundy=0, larger thany|=<1. This is in agreement with
the theoretical expectation that the singularityg¢f) near-
est to the origin is the three-particle dui04,103. If this is
the case, the convergence radiysof the Taylor expansion
of g(y) isrq=9Sy . Since, as we shall se§y =1, at least
asymptotically we should have

1
Ci+1:§Ci-

(6.15

This behavior can be checked explicitly in the lafdgdimit

(as shown exp||c|t|y in Append|x A)]_and can be calculated of the N-vector model[39] In two dimensions, the critical
by analyzing the corresponding HT series. Some details ofwo- pomt function can be written in terms of the solutions of
the analysis of our HT series are reported in Appendix A 42 Painlevedifferential equatior{105] and it can be verified

In Table VI we report the results fotg=0,1 and the spin-1
model. We obtain the estimates

c,=—3.57613)x 10 %, (6.11)
=0.874)x 105, (6.12

and the bound
—10 8=<c,<O0. (6.13

The constantg; and Sy, can also be calculated by field-

theoretic methods. They have been compute@(e®) in the
framework of thee expansion[103], and toO(g*) in the
framework of thed=3 g expansion[39]. In Table IX we

TABLE X. Estimates ofSy, andc; .
lattice, respectively.

explicitly thatry=9Sy, . In Table XI we report the values of
Sy andc; for the two-dimensional Ising model.

Assuming the patter(6.14), we may estimat&y, andS;
from c,, c3, andc,. Indeed from the equatiog(yy)=0,
wherey,=—Sy,, we obtain

Su=1+Cp—Cy+Cy+2¢5+ (6.16

S,=1-2c,+3c3—4c,—2C5+- - -, (6.17)
where the ellipses indicate contributions that are negligible
with respect toc,. In Ref. [39] the relation(6.16) has been
confirmed by a direct analysis of the HT seriesSgf. From

Egs. (6.16 and (6.17 we obtain Sy, =0.999634(4)[from

(so and(bco denote the simple cubic and the body-centered-cubic

IHT HT € exp. d=3 g exp.
Cy —3.57613x 104 —3.02)x 10 *[39] -3.32) x10°4 —4.05) x1074
—5.51.5%X 10 * (s¢ [102]
—7.1(1.5%x10 * (bco [102]
Cq 0.874)x10°° 1.0(1)x 1075 [39] 0.7(1) x10°° 1.3(3) X10°°
0.52)x 107° (so) [102]
0.93)x107° (bco) [102]
C4 —10"%<¢,<0 —0.3(1)x10°® —0.62)x10°®
Su 0.9996344) 0.9997%10) [39] 0.999684) 0.999596)
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TABLE XI. Values of Sy andc; for the two-dimensional Ising  can see from the values &, andc; reported in Table XI.
model in the high- and low-temperature phases. Note that in the low-temperature phase of the two-
dimensional Ising model, the singularity kf= —Mgap of

High temperaur¢106] Low temperature G(k) is not a simple pole, but a branch poiiit05]. As a
Sy =0.999196337056 Sy =0.399623590999 consequencey(y) is not analytic forly|>S,,, and therefore
c,=—0.793679606% 103 ¢, =—0.42989191603 the convergence radius of the expansion aropad is Sy, .
c3=0.109599108 10 * c; =0.5256121845 For discussions of the analytic structureggfy) in the low-
c,=—0.3127446&10° c, = —0.8154613925 temperature phase of the three-dimensional Ising model, see,
cs=0.126670x 10"’ s =1.422603449 e.g., Refs[108,103,104,11p
ce=—0.62997% 10 ° Cg = —2.663354573

VII. THE CRITICAL EQUATION OF STATE

which we can derive an estimate of the ra@g =f /" A. Parametric representation

=1.0001882), cf. Egs. (B5 and (B6)] and S, The critical equation of state provides relations among the

=1.0007417). thermodynamical quantities in the neighborhood of the criti-
We can also use our results to improve the phenomendsal temperature, in both phases. From this equation one can

logical model proposed by Brgyt03]. If we parametrize the then derive all the universal ratios of amplitudes involving

largey behavior ofg(y) as[107] quantities defined at zero-momentuie., integrated in the
volume), such as specific heat, magnetic susceptibility, etc.
B Ay A, Ag From the analysis of IHT series we have obtained the first
a(y) 1:y1’ | 1T NERRTEn +y1’(2”) ., (6.18  few nontrivial terms of the small-field expansion of the ef-

fective potential in the high-temperature phase. This pro-

then, by using our estimates of the critical exponents and th¥ides corresponding information for the equation of state
phenomenological function of R€f103], we obtain the fol- HoctAoF (2) 7.1
lowing values for the coefficients: ’ '

wherez<Mt~# and, using Eq(5.9),
JA(z)

A~0.918, A,~255 A;~—3.45.  (6.19

Estimating reliable errors on these results is practically im- F(z)=———=z+%z%+ 2 Fome1Z2™Y (7.2
possible, since it is difficult to assess the systematic error due 9z m=2
to the many uncontrolled simplifications that are used. It is, .
however, reassuring that they are in reasonable agreeme‘f‘ﬂth
the e-expansion predictionl03] 1
Fom-1=———Tom- 7.3
A;~0.92, A,~18, Az~-—27, (6.20 m-17om—1)1 2m (7.3
and with the results of a recent experimental st{@8li/ The functionH(M,t) representing the external field in the
critical equation of staté€7.1) satisfies Griffith’s analyticity:
A;=0.91521), A,=2.0580), Az;=-2.9580). it is regular atM =0 for t>0 fixed and at=0 for M>0

(6.21)  fixed. The first region corresponds to smalin Eq. (7.1),

, . . ... while the second is related to large whereF(z) can be
Bray’s phenomenological expression also makes predlctloné

for the coefficientsc;. The pattern(6.15 is built into the xpanded in the form

approach. We find,=—4.2x10 * andc3=1.0x107°, in

good agreement with our IHT estimates. Therefore, Bray's F(2)=2°2, Frz "~ (7.4
expression provides a good descriptiorg¢y) for small and n=0
large values ofy. However, in the intermediate crossover
region, as already observed in RE61], the agreement is
worse: Bray’s interpolation is lower by 20-50% than the
experimental result.

Of course,F,, are universal constants.

To reach the coexistence curve, ife<0 andH=0, one
should perform an analytic continuation in the comptex
plane[1,23]. The spontaneous magnetization is related to the

funlgtigr]]ea:ggv';%rpnﬁirgtﬂ;e uﬁZ?Se?(’ ;?1:021’ ;??héwfzg%m complex zerozy of F(z). Therefore, the description of the
g b ’ coexistence curve is related to the behaviof=¢f) in the

However, the deviation from the Gaussian behavior is mucrr]1ei hborhood of,. In order to obtain a representation of the
larger. The leading coefficiert, is larger thanc, by about g o P

) . critical equation of state that is valid in the whole critical
two orders of magnitudgl108|. Moreover, by analyzing the region, one may use parametric representations, which

low-temperature series published in REfO9] one getsSy  jmplement in a simple way all scaling and analytic proper-
=0.938(8) [and,  correspondingly, Q;=fg,/f ties. One parametrizéd andt in terms ofR and 6 [24—26:
=1.0324)]. ThusS,, shows a much larger deviation from

one (the Gaussian valyethan the corresponding high- M =myR?¥,

temperature phase quantigy, . The two-dimensional Ising

model shows even larger deviations from E6.3), as one t=R(1—6?), (7.5
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H=hoR?%h(#), where
whereh, andm, are normalization constants. The function .
0 o . .
h(#0) is odd and regular a2=1 and atf= 0. The constarit, C“’m:(n_ m)! kHl (2m=y+k=1); (7.12
can be chosen so tha(#)= 0+ 0(6°). The zero ofh(6),
p>1, represents the coexistence cuWe 0, T<T.. The note thatc, , = 1. In generalh,,.; depends ony, 3, and
parametric representation satisfies the requirements of regan the coefficients,,,,; with m=n.
larity of the equation of state. One expects at most an essen- We shall need the explicit form of the first two coeffi-
tial singularity on the coexistence cur{/&l1]. cients:
The relation betweeh(6) andF(z) is given by
hs=5p*—7, (7.13

hs=3y(y—1)+ (28— y)p?+Fsp*.  (7.14

z=p6(1—6%) P, (7.6)

h(6)=p~1(1-6%)P°F(2(0)), (7.7)
. . . B. Approximation scheme based on stationarity

6>0, and hyperscaling implies th@&é= 8+ y. Note that . ) . .
this mapping is invertible only in the regiofi< 6, where In Ref.[23], Guida and Zinn-Justin use the first few co-
0,=(1—-28) 2 is the solution of the equation’(9)=0. efficients of the smali expansion of=(2) to get polynomial
Thus the values of that are relevant for the critical equation @PProximations ofh(#) that should provide a description
of state, i.e., 8 < 6,, must be smaller thad,. This fact that is reliable in the whole critical region. The approxima-
will not be a real limitation for us, since the range of valuestions considered are truncations of the snta#ixpansion of

of ¢ involved in our calculationgwhich will be 0< #°< 63 h(p.0), i.e.,

=1.40) will always be far from the limiting value9|2 t-1
=~2.88. _ hO(p,0)=0+ 2 honia(p)0®™*,  (7.15
As a consequence of Eq§..5), (7.6), and(7.7), we easily n=1

obtain the relationships ] o
whereh,, . 1(p) are given by Eq(7.11). We follow a similar
M (mg H ho strategy, with a significant difference in the procedure
—ﬁz(—) z, %=(— F(z). (7.8  adopted in order to fix the value of.
t P t p By Egs.(7.11) and (7.12, the coefficientdh,,. 1(p) in-
. cluded in Eq.(7.19 are written in terms of thé parameters
We can therefore treat as a free parameter, and the scallng% B, Fs---Fay_ . In practice, only the first coefficients of
relations between physical variables will not dependpon  ihe smallg expansion oh(#4) are well determined, since we
provided thatm, and h, are rescaled witlp. In the exact  haye good estimates only for the first fdw,. ;. Once the
parametric equation, the value pimay be chosen arbitrarily 4ger of the truncation has been decided, one may exploit the
but, as we shall see, when adopting an approximation proc&eedom of choosing to optimize the approximation of
dure the dependence gnis not eliminated,_ and it may be- h(4). In this way one may hope to obtain a good approxi-
come important to choose the value of this parameter propyation even for small values afReferencé23] proposes to
erly in order to optimize the approximation. determine the optimal value @f by minimizing the absolute
From 6, one can ob_taln the universal rescaled spontaney, e of hy_4(p), i.e., the coefficient of the highest-order
ous magnetizatiofi23], i.e., the complex zera, of F(2), term considered. The idea underlying this procedure is to
increase the importance of small powersgofOur approach
is different.

. . . Our starting point is the independence frpnof the scal-
From the functiorh(#) one can calculate the universal ratios gp b pro

. ) L ing function F(z) and, as a consequence, of all universal
of gmphtudes. In Appencﬁx B we report the deflmtlons of thg ratios of amplitudes that can be extracted from it. Of course
universal ratios of amplitudes that have been introduced iBhis property does not hold anymore when we start from a’
the literature, and the corresponding expressions in terms ??uncated functiorh®(p, 6), i.e., if we compute universal

h(o). " 0.6). _
Expandingh(6) in (odd) powers of6, quantities from a functio'"(p,z) defined by

zo=|zole” '™, |zo|=pOo(05—1)"F. (7.9

FO(p,2)=FV(p,0(p,2)), (7.16
h(6)= 6+ X a6, (7.10
n=1 where
and using Eq(7.7), one can find the relations amohg,, , — ph®(p,6)
and the coefficients ., of the expansion ofF(z). The R )(p,ﬁ)Zm (7.17

procedure is explained in Appendix C, and the general result

IS and 6(p,z) is obtained by inverting Eq.7.6).
n In order to optimize for a given truncatiom®(p, §), we
hop s 1= z Cn,mpsz2m+lu (7.12) propose a procedure based on the_physpal requwen"_nent of
m=0 minimal dependence om of the resulting universal function
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F®(p,z). This can be obtained by assumipgo depend on Wallace and Zid27] already noticed that the minimum

z i.e.,p=pY(z), and by requiring the functional stationarity condition of Refs[24—26 was equivalent to a condition of
condition global stationarity for the linear parametric model. We have
shown that such a global stationarity can be extended to

SFW(pM 2) other parametric models with# 2, and can be used to im-

(7.189  prove the approximation.
The next truncation, corresponding te-3, can also be

. - . treated analytically. Since it sensibly improves the linear
(see Ref[45] and references therein for a similar teChn'queparametric model in the 3D Ising case, we shall present here

applied to the resummation of perturbative power expan: : . . . "
siong. The nontrivial fact, even surprising at first sight, is a few details. By applying the stationarity conditiGh21) to

that the solutionp®(z) of Eq. (7.18 is constant. In other Eq. (7.14, we obtain

sp®

words, for anyt there exists a solutiop; independent of (y—28)(1—y+28)
that satisfies the global stationarity condition p3=
124B=v)Fs
IF(p,2)

=0. (7.19 «

p=py

722— ) y(y—1)(4B— y)Fs|*?
= \/1_ (7= 28)2(1—y+2B)

ap

This is equivalent to the fact that, for any universal ratio of (7.24

amplitudes R, its approximationR("(p) [obtained from  Universal ratios of amplitudes may be evaluated in terms of
F(p,2)] satisfies the stationarity condition p3; they will now depend only on the parametgds y, and

Fs. Note that the predictions of thie=2 andt=3 models

-0 (7.20 differ from each other only proportionally to the difference
B ' ' between the “experimental” value d¥5 and the value pre-

e dicted according to Eq(7.23),

The proof of Eq(7.19 is given in Appendix C, where we (y—2pB)2
show that the global stationarity condition amounts to requir- FEF’Z):72——1)'
ing p, to be a solution of the algebraic equation vy

dRY(p)
dp

(7.2

5 If we replaceFs with F{?) in thet=3 model results, all the
(28— 1)p&_ —2y+2t— 2} hy_1(p)=0. (7.20) linear parametric model results are automatically reproduced.
In the 3D Ising model, the two values differ by6%, and
] . S thus we expect comparable discrepancies for all universal
The idea behind our scheme of approximation is that, foratios of amplitudes. This can be verified from the numerical
any truncation, the stationarity condition enforces the physitesyits that we will present in Sec. VIl Bee Table XI). All
cal request that the universal ratios of amplitudes be miniypiversal ratios of amplitudes obtained from the2 trun-
mally dependent op. To check the convergence of the ap- cation(i.e., the linear parametric modglising our estimates
proximation, one can repeat the computation of universahy y and g, differ at most by a few per cent from previously
ratios of amplitudes from the truncated functib®'(p;,6)  available estimates. The=3 and higher-order approxima-
for different values of, as long as one has a reliable estimatetions are consistent with the latter. The apparent convergence
of F5—;. We have noa priori argument in favor of a fast jn t of the results provides a further important support to this
convergence i of the universal ratios of amplitudes derived gcheme.
by this procedure towards their exact values. However, we |t js worth noting that the parametric representation of the
may appreciate that its lowest-order implementation, corregquation of state induces parametric forms for such thermo-
sponding tot=2 in Eq. (7.19), reproduces the well known gynamic functions as the free energy and the susceptibility,
formulas of Refs[24-26, which give an effective optimi- a5 discussed in detail in Appendix B 2. When we assume a
zation of the linear parametric model. Indeed, we obtainruncated form of the parametric equation of state, in general

from Egs.(7.21) and(7.13 thet=2 solution only the corresponding free-energy function will admit a
polynomial representation. A peculiar and possibly unique

__[6y(y—1) feature of our scheme is the induced truncation of the func-

P2= y—28 " (7.22 tion related to the susceptibility, which turns out to be an

even polynomial of degreet4n the variabled. Appendix C
In this case the critical equation of state and all critical am-contains a more extended discussion of these and other prop-
plitudes turn out to be expressible simply in terms of theerties of the approximation scheme based on the stationarity
critical exponents3 and y. In particular, we found a closed condition.

form expression for a||:(22n)1 ., coefficients(see Appendix C We have introduced our parametric representation assum-
for a derivation: ing independent knowledge &fs, ... ,F,_4. It should be
noted that our results fdr=3 can also be used as a phenom-
2 (—1)™ y(y— 1)m*2 enological parametrization, fitting the value Bf on any

= | TH (2B8m—vy—k). (7.23 known universal quantity. As we will show in Sec. VII D,
m: pz k=1 the difference with the linear parametric model of Rggel—
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TABLE XII. Universal ratios of amplitudes obtained by taking different approximations of the parametric fuldgt@)n Numbers

marked with an asterisk are inputs, not predictions. The valygsare obtained as in Reff23]; see text for details.

h®(p,,6) h®(ps,6) h®(py4,6) h®(ps, 6) h®(pmz,6) h®(pm4,6)
p 1.735812) 1.740714) 1.728983) 1.68651) 1.688926) 1.65130)
03 1.360611) 1.387929) 1.37312) 1.32553) 1.331013 1.29527)
Fo 0.0328014) 0.0338218) 0.0337421) 0.0336626) 0.0337818) 0.0337023)
|Zo| 2.82512) 2.793717) 2.797Q33) 2.801272) 2.795515) 2.799245)
Ug 0.522216) 0.531621) 0.529529) 0.526160) 0.530319) 0.527639)
U, 4.82611) 4.75215) 4.76922) 4.79747) 4.76413) 4.78630)
U, —9.737141) —8.91883) —9.1018) —9.4248) —9.06167) —9.31(28)
Ry 0.0553813) 0.0568116) 0.0564432) 0.055810) 0.0565614) 0.0560853)
R. 0.02197616) 0.02248830) 0.02235%11) 0.0221136) 0.02238718) 0.0222Q@19)
R, 7.978964) 7.80410) 7.82318 7.84740) 7.814685) 7.83625)
R, 92.1023) 93.9120 93.2545) 91.91.7) 93.2521) 92.27183)
V3 6.011679) 6.056168) 6.04111) 6.01439) 6.041273) 6.01820)
Va4 16.32055) 16.12166) 16.21(11) 16.41(24) 16.23955) 16.3915)
Ql_‘s 1.677%19) 1.658827) 1.662444) 1.66810) 1.661125) 1.665660)
U,R; 38.50882) 37.0915 37.3126) 37.6455) 37.2313) 37.5035)
RyR. 0.441913 0.443413) 0.441619) 0.437756) 0.442Q13) 0.439229)
[ 1.938948) *2.0485) *2.0485) *2.0485) *2.0485) *2.0485)
g 2.50131) 2.40239) *2.298) *2.288) 2.36543) *2.298)
Io —12.61241) —12.14660) —10.01.5 *—13(4) —11.8010) —10.9886)
26 is not negligible. On the other hand, our numerical esti- (—1)m
mates fort=4 show that the difference frort=3 is too fm1=m om> (7.29
small (compared with both theoretical and experimental pre-
cision) to justify the introduction of an additional phenom- m—2
enological parametef. P LU <T+ E) D 1 (7.30

me—mbo7 2 13 '6/& K| '

C. € expansion of the parametric representation
It is interesting to compare our results with the analysis Oireproducmg known resultf23]. More generally, knowing

. B A ;
the parametric equation of state, which can be performed iff'® ex;r)]ansmn of the coeff|C|erE£2fm+1 to>O(e.)k:‘orhm<t IS
the context of thes expansion, generalizing results presentede0Ugh to reconstruct ak ., for m=t with the same

in Refs.[27,117. accuracy.
According to Ref[27], within the e expansion it is pos-
sible to choose a valug, such that for alh=2, D. Results
hont 1(po)=O(e" 1) (7.26 As input parameters for the determination of the functions
n . .

h(®(p,0) we use the results of the IHT expansiow:

The calculation shows that,= 2. We proved in Appendix = 1.237X4), v=0.63002(23),rs=2.0445), rg=2.248),

C that Eq.(7.26 keeps holding for all choices gf that 10~ —13(4). . _ _

satisfy the relatiom = py+ O(€). We can nowe-expand our In Table XII we report the universal ratios of amplitude as

globally stationary solutions for arbitraty obtaining derived from truncations corresponding te-2,3,4,5. We
use the standard notation for the ratios of amplitutkes,

lim p;= po. (7.27 e.g., Ref[113]); all definitions can be found in Table XIlI.
e—0 For comparison, we also report, fo 3,4, the results ob-
tained using the procedure of RE23], fixing p to the value
As a consequence, any truncation satisfying the stationaritxmt that minimizes the absolute value of tfg 62~1) co-
condition is an accurate description of te@xpanded para- efficient. [As already noted in Ref23], for t=4 the mini-
metric equation of state up to and includige'). mum of h;(p) is zero, while fort=3, hs(p) never reaches

As a byproduct, we may extract from the linear modelzero] Such results are very close to those derived from the
relation (7.23, expanded td(e?), the coefficients of the  stationarity condition; this is easily explained by the fact that
expansion foiF ., 1, for m=2: the values of,; are close tq;.

The errors reported in Table Xl are related to the uncer-
tainty of the corresponding input parametéc®nsidering
them as independentThe results fort=2,3,4 suggest a
good convergence and give good support for our analysis.
We easily obtained from Ed7.23 the closed form results The results fort=5, although perfectly consistent, are less

F2m+1=k§1 f €. (7.289
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TABLE XIIl. Summary of the results obtained in this paper by our high-temperature calculdtidfig
by using the parametric representation of the equation of §tdiePR), by analyzing the low-temperature
expansionLT), and by combining the two approach@s T-PR+LT). Notations are explained in Appendix

B.
IHT IHT-PR LT IHT-PR+LT

y 1.23714)
v 0.6300223)
a 0.10997)
n 0.03644)
B 0.3264818)
) 4.789322)
o 0.020812)
re 2.0485)
rg 2.288)
10 —134) —-10(2)
Up=A*/A" 0.5303)
U,=C*/C™ 4.772)
U,=C,/C, -9.1(2)
R{=aA"C"/B? 0.05643)
R, =aA " C7/B? 0.0223511)
R;=—C,B%/(C")%=|z|? 7.822)
Ry=vs=—C3B/(C")? 6.041(11)
R,=C,B%(C")® 93.35)
v4=—R, +3Rj 16.21(11)

=R, =C*B’Y/(5C%° 1.6625)
Fo cf. Eq.(7.4) 0.03372)
9, =9=—C;/[(C)2(f")*] 23.494)
w?=C~/[B*(f)%] 4.754) [14]
U =f"/f"=(w2U,R;/g;)*? 1.9617)
Q'=aA"(f")*=R,R/g; 0.018808)
R;=(Q")™" 0.26544)
Q =aA (f)3=R_/W? 0.004715)
Q.=B*(f*)*C"=Q"/R; =R, /g, 0.333010)
93 =wvgs 13.176)
gs =wvy 77.08)
Qi =fgadf” 1.0001882)
Q¢ =foaf ™ 1.0324) [39]
Ue,, = foad foa= UeQ: 1Qs 1.90110)
Qi=fgadf 1.0244)
Q,=(f¢/f")2-7Cc*/Ce 1.19510)

useful for checking convergence, due to the large uncertaintyhe results so obtained are denoted by IHT+RH in Table

of Fq. In Table XIIl we report our final estimates, obtained XIIl. The low-temperature expansion of can be calculated
using h(¥(p,, 6); all the approximations reported in Table to O(u?Y) on the cubic lattice using the series published in
XIl are consistent with them, except 2. Refs.[109,114. The results reported in Table XIIl were ob-

We should say that the method of Guida and Zinn-Justirtained by using the Roskies transform in order to reduce the
to determine the optimgb leads to equivalent results, and systematic effects due to confluent singularifié4].
shows an apparent good convergence as well. However, we We also consider a parametric representation of the cor-
believe that the global stationarity represents a more physicaélation length. Following Ref115], we write
requirement, and it is more amenable to a theoretical analysis ) B
of its convergence properties. Moreover, as we have shown, ETx=R"""a(0), (7.31
it has the linear parametric model of Ref24—-27 as the
lowest-order approximation.

Estimates of other universal ratios of amplitudes can be
obtained by supplementing the above results with the esti-
mates ofw?=C/[B?(f)3] and Q; =fgJf™ obtained by We consider the simplest polynomial approximatiora{@)
an analysis of the corresponding low-temperature expansio@nd ag.d 6):

Eoad X=R ™ ""ag,d 0). (7.32
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a(f)~ay(1+c6?), (7.33  (see, e.g., Refd48,49,13@). Some results can be found in
Ref. [136]: U,=4.29, g;=15.24, Q;°=1.61, and U,
agad 0)~agap d 1+ Cgaf?), (7.3 =1.86.

We report in Table XIV experimental results for three
where the constantsand cg,, can be determined by fitting interesting physical systems exhibiting a critical point be-
the quantitiesJ, andU, . Then, using Eqsl7.3D), (7.32,  longing to the 3D Ising universality class: binary mixtures,
and the parametric representation of the equation of statéiguid-vapor transitions and uniaxial antiferromagnetic sys-
one can estimate the universal ratios of amplitu@sand tems. A review of experimental data can be found in Ref.
Q, defined in Table XIII. Notice that, given the equation of [55]. Most of the results shown in Table XIV were reported

state, the normalization, is not arbitrary, but it may be in Refs.[23,122. They should give an overview of the level

fixed using the zero-momentum four-point coupling of precision reached by experiments.
For the sake of comparison, in Table XV we report the
ao=(ho/p)Y¥mylp)~%3(gk) 22 (7.35 universal ratios of amplitudes for the two-dimensional Ising

model. The purely thermal results are taken from RE®5],
wherehy, my andp have been introduced in Eq@.5) and  where the exact two-point function has been written in terms
(7.6). Notice thata, depends only on the ratids,/p and  of the solution of a PainlévequationQ* andQ~ have been
my/p, as is required of a physical quantity. Moreover, onecomputed by us solving numerically the differential equa-
hasagap,OZ(Qg)zao- In order to check the results obtained tions reported in Re1[105]. The ratios involving amplitudes
from the approximate expressiofi33 and(7.34, we also  along the critical isotherm can be obtained using the results

considered the following parametric representafibd2): reported in Ref[138]. For the quantities that are not known
exactly, we report estimates derived from the high- and low-
£72=R?"b(0), (7.36 temperature expansions. Such estimates are quite accurate
and should be reliable because the leading correction to scal-
gg—asz RZngap( 0), (7.37 ing is analytic, since the subleading exponanis expected

to be larger than onésee, e.g., Ref{139] and references

and the corresponding polynomial approximations truncateeherein. In particular, the available exact calculatiqi®5]
to second order. The results fQ; andQ, obtained by this  for the square-lattice Ising model near criticality have shown
second representation are perfectly consistent with thosenly analytic corrections to the leading power law. There-
from the first one. Our final estimates @f; andQ, derived  fore, the traditional methods of series analysis should work
by the above method are reported in Table XIlI. well.

In Table XIV we compare our results with other ap-
proaches. We find good overall agreement.

Our results appear to substantially improve the estimates ACKNOWLEDGMENTS
of most of the universal ratios considered. In Table XIV we
have collected results obtained by high-temperature and low- We gratefully acknowledge useful discussions with Ric-
temperature expansioriT,LT), Monte Carlo simulations ¢ardo Guida and Alan Sokal, and correspondence with Vic-
(MC), field-theoretical methods such asexpansion and tor Martin-Mayor and Giorgio Parisi. We thank Martin
various kinds of expansions at fixed dimensbﬁ:3’ and Hasenbusch for making available to us the est|mat®bf
experiments. Concerning the HT,LT estimates, we mentiof© the spin-1 model, that allowed us to revise our original
the recent Ref[113], where a review of such results is pre- Work and improve the final results.
sented. The agreement with the most recent Monte Carlo
simulations is good, especially with the results reported in
Ref. [122], which are quite precise. However, we note that APPENDIX A: GENERATION AND ANALYSIS OF THE
the estimates o), reported in Ref[40] are slightly larger. HIGH-TEMPERATURE EXPANSION FOR
Moreover, there is an apparent discrepancy with the estimate IMPROVED HAMILTONIANS
of g, of Ref.[133]. It is worth mentioning that the result of
Ref. [123] was obtained simulating a four-dimensional
SU(2) lattice gauge model at finite temperature, whose Before discussing the series computation, let us define all
phase transition is expected to be in the 3D Ising universalityhe quantities we are interested in and fix the notation.
class. Field-theoretical estimates are, in general, less precise, Starting from the two-point functio®(x)=(#(0)¢(x)),
although perfectly consistent. We mention that the resultgve define its spherical moments
denoted by ‘=3 exp.” are obtained from different kinds of
expansionsg expansiori23,44,121,13R minimal renormal- My = E (x2)IG(x) (A1)
ization withoute expansiorf 120,135, expansion in the cou- s
pling u=3w? defined in the low-temperature phdde6]. In
Refs.[23,44) Guida and Zinn-Justin used tile=3 g ande  (x=Mp) and the first nonspherical moments
expansions to calculate the small-field expansion of the ef-
fective potential and a parametric representation of the criti- _ 2\iryA_ 3/y2\2
cal equation of state. We also mention the res(iist in- G4 ; O I 571600 (A2)
cluded in this table of an approach based on the
approximate solution of exact renormalization equationgwherex"=3;x;").

1. Definitions
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TABLE XIV. Estimates of the quantities in Table XllI by various approaches. The experimental data are taken frggbRefless
otherwise stated. MS denotes a magnetic system; BM a binary mixture; LV the liquid-vapor transition in a simple fluid. For values marked
with an asterisk, the error is not quoted explicitly in the reference.

IHT-PR HT,LT MC € exp. d=3 exp. experiments
Uy 0.5303) 0.5239) [116] 0.56Q10) [40] 0.52737) [44] 0.53719) [44] BM 0.56(2)
0.51* [117] 0.55012) [40] 0.52410) [118,119 0.54Q11) [120] LV 0.50(3)
0.56716) [40] 0.54114) [121] MS 0.513)
LV [56]  0.53"%
LV [57] 0.53817)
U, 4.772) 4.9515) [116] 4.753) [122] 4.7316) [44] 4.7910) [44] BM 4.4(4)
5.01* [102] 4.7211) [123] 4.9* [118] 4.7730) [121] LV 4.9(2)
4.8* [124,129 4.7217) [126] MS 5.1(6)
MS [73] 4.6(2)
U, -9.1(2) —-9.0(3) [96] —8.6(1.5) [44] —9.1(6) [44]
RS 0.05643) 0.058110) [96] 0.056935) [44] 0.057420) [44] BM 0.050(15)
0.059410) [121] LV 0.047(10)
Ry 7.822) 7.9412) [113] 8.24(34) [23] 7.84* [44]
Ry=v3 6.04111) 6.44(30) [113,96 5.995) [86] 6.086) [44]
6.07(19) [44]
R, 93.35) 107(13) [96,113
Vg 16.21(11) 15.91.4) [86]
Ql"s 1.6625) 1.5723) [127,113 1.64836) [44] 1.66918) [44] BM 1.75(30)
1.67* [118,119 1.7* [121] LV 1.69(14)
w2 4.754) [14] 4.773) [122] 4.73* [126]
4.71(5) [96,12§
U, 1.9617) 1.961) [116] 1.952) [122] 1.91* [124] 2.01328) [126] BM 1.93(7)
1.96* [102] 2.061) [129] MS 1.9215)
Q" 0.0188@8) 0.02029) [130] 0.019310) [40] 0.0197 [131,119 0.0196&15) [132] LV [58] 0.017432)
0.0188@15) [116] LV [56] 0.0234)
Q 0.004715)  0.0047720) [113]  0.0046317) [40]
Q. 0.333@10) 0.3246) [113] 0.3285) [122] 0.3319) [121] BM 0.335)
LV 0.35(4)
05 13.176) 13.94) [96] 13.65) [133] 13.0612) [86]
g, 77.08) 85* [96] 108(7) [133] 75(7) [86]
Q/ 1.0001882) 1.0001* [113] 1.000162) 1.000213)
Q¢ 1.0244) 1.0073) [113]
Q: 1.0324) [39] 1.0316) [110,134
1.0373) [113]
Q, 1.19510)  1.172) [127,113 1.13* [124]

The second-moment correlation length is defined by

The coefficientsc; of the low-momentum expansion of the

(A3)

critical limit of appropriate dimensionless ratios of spherical

moments, or of the corresponding weighted momaﬁzﬁ
=m,;/x. Introducing the quantities

function g(y) introduced in Sec. VI can be related to the

U2j

1

j+opmaMs

(A4)
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TABLE XV. Universal ratios of amplitudes for the two-
dimensional Ising model. Since the specific heat diverges logarith-
mically in the two-dimensional Ising model, the specific heat am-
plitudesA™= are defined byC,~—A* Int.

2. Linked cluster expansion

We computed the high-temperature expansion by the
linked cluster expansiofLCE) technique. A general intro-
duction to the LCE can be found in R¢.40]. We modeled

the application of the LCE to @{)-symmetric models after

y 714
: 1 Ref.[141].
Ug=A*/IA" 1 In prder to perform _the !_CE for the most ge_neral model
U.=C*/C- 37 69365201 desprlbed by.the Ham|lton|a(1._2), we parametrize the po-
R;ZEA+C+/BZ 0.31856939 tential V(¢?) in terms of the “single-site moments[’141]
R;=A"C7/B? 0.00845154 T(AN) 3
Q; ’=R,=C*B’ Y/(sC°° 6.77828502 Moy = 2 N-1+2k
W2=C/[B3(f")?] 053152607 2“T(3N+k)  In-1
U=fr/f" 3.16249504
U, =fidf. 2 »
Q’ffa; A f?‘f!ga;’ 0.15002704 J= f . dx X exd —V(x?)]. (A10)
Q =A(f)? 0.015900517

+__ £t + . . . o
Q¢ =fgaff 1.000402074 We compute our series for fixed, leaving allm,, as free

C_¢C c
QE;;QE“!I, 115'2122?529 parameters: each term of the series is a polynomiahjp
Q o gf‘iJ N ) with rational coefficients.
Q=(f9/fM)“~"cr/Cc® 2.8355305

With the aim of computing as many terms of the series as
possible, we adopted all the technical developments of Ref.
[142], and we introduced more improvements of our own; in

g.=9=-C,/[(CH)*(f")?] 14.6942) [137,14

e 3.6782) [99] ‘ : A )
e 26.02) [99] this Appendix, we will only describe these; readers not fa-
f10 275(15) [99] miliar with technical details of the LCE should consult Refs.

[141,143.

As discussed in Refl142], Sec. 3, the LCE requires a
unigue representation of graphs; it is convenient to imple-
ment this by defining a canonical form for the incidence
matrix. The reduction to canonical form of a graph with
one can define combinations 0f; (that we will still callc;  vertices requires, in principle, the comparison of tHein-
to avoid introducing new symboalsaving c; as a critical  cidence matrices obtained by permutation of vertices, which
limit: is clearly unmanageable for large graphs; even with the in-
troduction of the “extended vertex ordering” of Refl42],

v3=—C;B/(C")?
v,=—C,B?%(C7)%+3v3

33.0116) [96,86]
48.61.2) [86]

Co=1—u,+%5M?, (A5)  this operation remains the dominant factor in the computa-
tion time; therefore, we devoted a large effort to the optimi-
Ca=1—2U,+Ug— 525M %, (A6)  Zzation of this aspect of the computation. On one hand, we

have perfected the extended vertex ordering, and we are able
to recognize inequivalent vertices much more often. On the
other hand, we search fga subgroup of the symmetry
group of the incidence matrix, which allows us to perform
etc. Notice that the terms proportional to powersf do  explicitly only one permutation for each equivalence class.
not contribute in the critical limiM — 0, but they allow us to  Altogether, the largest sets of vertices which are explicitly
define improved estimatof89]. Indeed, in the lattice Gauss- permuted are of size 5 or legexcept for a few hundred
ian limit, defined by the two-point function diagrams requiring 6, and a handful requiring permutations
of 7 or 8 elements
1 R The next most computer-intensive operation is the com-
k=2 4sirf(ki/2), (A8)  putation of embedding numbers and color factors; it is opti-
! mized by “remembering” each computed value in a table,

compatibly with available memory. This is crucial for color
¢;=0 independently o, and not only in the critical limit  factors, which are computed recursively, and very effective
M—0. for embedding numbers.

The zero-momentum connected Green’s functions are de- The problem of handling integer and rational quantities
fined by which do not fit into machine precision is solved by using the
GNU multiprecision(GMP) library. Neither multiprecision

X2j= 2 ($(0)b(Xp) - - - p(Xaj— 1) b(Xa)))e: nor polynomials irﬁ’12k are necessary for the most t_axpe_nsive
Xp, o Xp sections of the computation; therefore, they have little impact
(A9)  on the computation time.
In order to speed up the handling of search and insertion
into ordered sets of data, we make extensive use of AVL

Cq=1—3Uy+ U5+ 2Us— Ug+ 755 M4+ 5555oM 6, (A7)

G(K)= 55—,
S CIVE

in particular, y,=y.
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TABLE XVI. Summary of normalization and length of our IHT B 171450770247965944104542584

series. gl Xa) =~ 32564156625
o i n (A14)
Y 0 20 We have checked th@ew) series form, andmg by chang-
& 1 19 ing variables tov =tanhg and verifying that all coefficients
9 _3 17 become integer numbers.
; 0 17 It would be pointless to present here the full results for an
re 0 16 arbitrary potential: the resulting expressions are only fit for
rs 0 15 further computer manipulation. For the three potentials we
10 o
c, 4 13 are interested in, we computea,, by numerical integration
Cs 3 13 (to 32-digit precision or higher The coefficientsa; of the
Ca 2 13 HT series forAg=0 andA,=1.1 and forAg=1 and A\,

=1.9 are reported in Tables XVII and XVIII, respectively.
The series for the spin-1 model defined by Ef.4), with

, . D=0.641, ted in Table XIX.
trees (height-balanced binary treescf., e.g., Ref.[143], are reported in fable

Chap. 6.2.3 AVL trees are used to manipulate graph sets,
multivariate polynomials, and tables of embedding numbers
and of color factors.

The LCE is dramatically simplified by restricting actual  In order to determine the critical exponeftfrom the
computations to the set of one-particle irreducible graphsnth-order series of (n=20 in our casg we used quasidi-
One must, however, establish the relationship between th&gonal first-, second-, and third-order integral approximants
usual moments and susceptibilities and their irreduciblglAl’s, IA2's, and IA3’s, respectively
parts. For this purpose, we found it convenient to define a |Al’s are solutions of the first-order linear differential
generating functional of irreducible momentsreducible  equation
momentum-space two-point functions

3. Critical exponents

P.(x)f’ (x)+Py(x)f(x)+R(x)=0, (A15)

G™i(p)=2 exp(ip-x)G¥(x), (A1l)  where the function®;(x) andR(x) are polynomials that are
x determined by the knowmth-order smallk expansion of

. f(x). We consideredm,; /mq/k] IA1’s with

where G!P(x) is the irreducible-graph contribution to the

field-field correlation. One may then prove the relationship m;+my+k+2=n—p,
R . d max{|(n—p—2)/3]—q,2]<m;,mg,k<[(n—p—2)/3]+q,
[G(P)]™*=[G™(p)]"*~282, cosp;.  (A12) (A16)

wherem; ,mg,k are the orders of the polynomi&l,, P,
By expanding both sides of E¢A12) in powers ofp?, itis  andR, respectively. The parametgrdetermines the degree
trivial to establish all desired relationships, both for sphericabf off-diagonality allowed. Since the best approximants are
and for nonspherical moments. expected to be those that are diagonal or quasidiagonal, we
We have calculateg andm, to 20th order, and the other considered sets of approximants corresponding=8. For

moments of the two-point functions to 19th order. We havey given integer numbew, only approximants using terms

calculatedy, to 18th order,ys to 17th order,yg to 16th . — .
: with n=n=n—p are selected byA16). In our analysis we
order, andyq, to 15th order. Using Egs(3.12), (5.23, considered the valugs=0,1.

.(5'24)’ and (5.2, one can obtain thg HT Seres correspond- IA2’s are solutions of the second-order linear differential
ing to the zero-momentum four-point coupling and the

quantitiesr ,; that parametrize the effective potential. equation
It is useful to factorize out the leading dependenceBon PL(x)f"(x)+ P, () (X) + Po(X) f(X) + R(X)=0.
| (A17)
O:ﬁrgb afs (A13)  We consideredm,/m;/my/k] 1A2's with

) . m,+m;+my+k+4=n—p,
the values ofr andn are summarized in Table XVI. In the

following, we will analyze the series normalized to start with
o(BY), i.e.,ap+Bay+--- .

We have checked our series fgp, and m, against the <[(n—p—4)/4]+q, (A18)
available series of the standard Ising motise, e.g., Refs.
[13,36); in this special case our only new result is the 18th-where m,,m;,mqy,k are the orders of the polynomi#l,,
order coefficient of the expansion f;: Pi, Po, andR, respectively. Again, the parametgrdeter-

maX|(n—p—4)/4]—q,2]<=m,,m;,mgy,k
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TABLE XVII. IHT series for A ,=1.1, \(=0, in the notation of Eq(A13).

PRE 60

i X m, my mg

0 0.5308447611308816674 0 0 0

1 1.6907769625206168952 1.6907769625206168952 1.6907769625206168952 1.6907769625206168952
2 4.8619910172171602715 10.770481113538254496 28.721282969435345322 86.163848908306035967
3 13.927143445449825611 48.231864289335148202 219.75546850876176116 1168.8527451895890195
4 38.903779467013842036 188.05200645833592066 1229.8912709035843796 9662.7116928978662527
5 108.53608309082300208 675.87104272683156690 5832.6111092485591617 61434.000941321774177
6 299.26769419241406575 2309.0702869335329515 24922.163253442953617 332091.05589205489865
7 824.59140866646260666 7605.2927810004027352 99136.392920539417813 1607441.8553355166225
8 2256.9464691160956608 24394.253637363046531 374199.26312351789406 7181423.6410152125984
9 6174.4168460205032479 76627.209216394784414 1356978.6661855495156 30189095.008610024020
10 16819.879385593690953 236799.07667260657765 4767392.0099162457155 120979394.99942695905
11 45803.222727034040360 721928.56294418965891 16324368.332600723787 466443860.83571669282
12 124363.26835432977776 2176629.7412550662641 54721422.909210908059 1742031434.2158738860
13 337573.74963124787949 6500509.9999124014627 180180889.59217314660 6334414835.2189134577
14 914347.51881247417342 19258195.825678901432 584286774.86828839115 22515209536.395375901
15 2476042.0363235919004 56653368.820414865245 1869882856.0802601457 78474598792.492084546
16 6694111.3933182426254 165647959.63348214176 5915646880.4853995649 268883672555.38373998
17 18094604.163418613844 481713425.26839816320 18526280962.623843359 907568914837.87389317
18 48847832.893538572297 1394159442.3995129568 57500007423.420861038 3022858145406.1028395
19 131848611.02423050678 4017559436.5586218326 177034534120.13444060 9949496764882.0179674
20 355511932.47075480765 11532862706.754267638

i Xa X6 Xs X10
0 —0.3285640660980093563 1.0162413020868264428 —6.8394260743547676540 79.348906365011205720

1 —4.1859963164157358115 25.898050097125655128 — 286.46285381596139097 4926.0498824266722100

2 —30.741724996686361292 334.99400966656728040 —5647.7911946128472205 136420.74020456605398
3 —176.53992137927974557 3085.9534765513322166 — 75010.539622248383529 2448228.6617818973385
4 —873.19795113342604018 22962.676420970454675 —772240.19869798230118 33066114.972427672856

5 —3914.7539681033628945 147391.51074600633293 —6637987.3112014615524 364115447.75387624436

6 —16340.897140343714854 848040.97611583569625 —49819302.751247368336 3432806859.5766444770

7 —64653.470284596876205 4484314.0227663949556 —336218289.35412445864 28624021619.321695067
8 —245234.96688614286659 22168058.403461618364 —2082668486.5197392127 215985650524.12674877
9 —899257.84241359785957 103719954.32133484536 —12019618575.926765056 1499822923734.9247399

10 —3206654.1029660245146 463530204.01159412237 —65362330202.998798196 9707913378518.1866160

11 —11170819.137408319309 1992634695.4221763266 —337846725947.59204461 59157394345479.522579

12 —38148679.051940544866 8285182135.0991054145 —1671339685352.6240713 342085313031114.78303

13 —128071730.18983471414 33466763808.875455279 —7957523515361.0083551 1889271366312617.3703

14 —423602975.57444761466 131799942528.27775884 —36629909644439.962983 10018120044594804.748

15 —1382909952.8269485885 507558776082.59290672 —163635571877509.11631 51230076380872446.008

16 — 4462746050.5347000940 1915992506452.6475673 —711670345253605.66031

17 —14253923929.146690502 7104558940304.9779228

18 —45107295178.923296542

mines the degree of off-diagonality allowed, and we consid-
ered sets of approximants corresponding)te2.
IA3’s are solutions of the third-order linear differential

equation

P30 7 (x) +P20) " (x) + P1(x) ' (X) + Po(x) () + R(x)

=0.

We consideredim;/m,/m;/mg/k] 1A3’s with

ms+my+m;+my+k+6=n—p,

ma){l_(n_p_6)/5J_q12]$m3!m21m11m01k

<[(n—p—6)/5]+q.

(A20)

We considered sets of approximants waitk 2.

(A19)

Our estimate of3. and y from each set of IA’s is the

average of the values corresponding to all nondefective ap-

proximants listed above. The error we quote is the standard

deviation. Approximants are considered defective when they

present spurious singularities close to the real axis for
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i X m, my mg

0 0.4655662671465330507 0 0 0

1 1.3005116946285418792 1.3005116946285418792 1.3005116946285418792 1.3005116946285418792
2 3.2867727127185864813 7.2656925005834656853 19.375180001555908494 58.125540004667725483
3 8.2759367806706747301 28.571904795057895903 130.05174486699400177 691.57352659837378755
4 20.312529070243777317 97.872800052605172528 638.95885613696143199 5016.1872942503349323
5 49.794483203882242272 309.06347996559814197 2661.2142140348739306 27994.182028926323346
6 120.62506581503040408 927.75225884375746610 9988.4118850888212117 132873.57808445335775
7 292.01512515747113432 2684.8185172507997345 34904.461272349558702 564842.72150668529468
8 702.16648194884216675 7566.3506306935978232 115746.99820735924226 2216511.1678444057633
9 1687.6428772292658916 20882.094002198352809 368765.50096064887178 8184889.2748500168622
10 4038.7968304000570954 56696.707453278695709 1138240.4288922759401 28813837.691500628877
11 9662.2729936573649464 151863.26982182684635 3424267.0781090006844 97595910.383064147131
12 23047.113364799224307 402271.59171959125975 10084793.611992545198 320214529.50558023009
13 54959.286082391555970 1055489.7357595885681 29174001.507844433518 1022942183.3309332937
14 130774.53710516575464 2747201.8540323841754 83116951.940376136421 3194364390.8578671172
15 311110.31236133784486 7100121.4902629495116 233696696.59215911285 9781470144.1262582176
16 738903.79800753751923 18238478.826399953589 649550962.77873855718 29444730149.930149105
17 1754633.3818777485475 46596282.414619468624 1787187905.0885303101 87315557903.862730209
18 4161219.5431591307916 118476705.93261076006 4873253901.0331542961 255504682223.76959562
19 9867152.2571694621736 299943150.21579862108 13181855628.291951390 738841191899.23449896
20 23372660.203375142541 756429264.37368967452

i Xa X6 Xs X10
0 —0.2477796481363361878 0.6474598784982264035 —3.7217906767025756640 37.013405312193356664

1 —2.7685883005851708908 14.535362477178409902 —137.07512921231932765 2014.8224919025960131

2 —17.877560582981223820 165.70820207079800267 —2380.8220701405889901 49093.219551382446508
3 —90.322805654272940178 1345.3663489182523069 —27871.670743361006737 776123.99513244411557
4 —393.02065426992610848 8820.7362245901247130 —252935.23058597306885 9238516.9347113237042

5 —1549.8790048885508754 49871.943864090224636 — 1916250.8876237147160 89671059.994338257912

6 —5689.6695707018226942 252682.48564411688205 —12673128.761295226766 745143260.15631620580

7 —19795.290447377859541 1176295.0381597851008 — 75349625.332312049631 5475799689.5566930641
8 —66017.086587684140210 5118124.4639866386541 —411110139.91029709454 36408447077.502609221
9 —212822.79826473961810 21072833.518843848267 —2089380048.3140434305 222743859156.05535943

10 —667124.90202267593913 82859426.257839273325 —10003697691.834647146 1270011540667.3854746

11 —2042817.2956666846385 313350700.53757124062 —45518090240.849158501 6816107886501.6215858

12 —6131769.6806946007770 1146009747.0203113140 —198194900838.32752342 34708877742973.050540

13 —18092493.782248051554 4071313753.6304055865 — 830439274834.30354664 168778204360271.32357

14 —52592383.442563299219 14100289090.570869350 —3363665155462.8191575 787889916506321.20775

15 —150889630.61165148373 47747821664.976757633 —13220617132779.560155 3546559365689180.8887

16 —427911822.28715837917 158482857336.16489875 —50583038860319.049950

17 —1201047651.7022285867 516675010346.30966717

18 —3339910306.5273359851

RepB=p.. More precisely, we considered defective the ap-robust and therefore less reliable. In the analysis of the criti-

proximants with spurious singularities in the rectangle

wherez=g/B.. The special values oy, Xmax» andymax

Xmin< Rez= Xmax:

|Im Z|<ymax

cal exponents we fixe®y,i,= 0.5, Xma= 1.5, andy .= 0.5.

Sometimes we also eliminated seemingly good approximants

(A21)

whose results were very far from the average of the other

approximantgmore than three standard deviatipns

As a further check of our analysis we used the fact ghat

are fixed essentially by stability criteria, and may differ in must present an antiferromagnetic singularitygt= — 3,
the various analysis. One should always check that, within avith exponent -« [37]; cf. Eq. (4.1). We verified the ex-
reasonable and rather wide range of values, the results distence of a singularity g8=— 8. and calculated the asso-

pend very little on the values ofin, Xmax: aNdYmax- The

ciated exponent. In some analyses we selected the approxi-

condition (A21) cannot be too strict, otherwise only a few mants with a pair of singularitie§§f and B; such thatg,
approximants are left. In this case the analysis would be less <& 3., and extracted the estimates 8f, vy, and y*
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i X m, my mg

0 0.5130338416658140921 0 0 0

1 1.5792223361663016211 1.5792223361663016211 1.5792223361663016211 1.5792223361663016211
2 4.4354864269385182067 9.7223340236143130564 25.926224062971501484 77.778672188914504451
3 12.419491590434972647 42.346809834993589030 191.98340105778667094 1019.9725391572417242
4 33.791261055416279831 160.98579902461367310 1043.4445460560890431 8166.3561104899782974
5 91.841711514904201711 564.00666776024395394 4815.3070263215122748 50394.717412597175181
6 246.45252550898370464 1877.9601316327756011 20036.716263907461491 264816.64944314665340
7 661.02891687705666766 6026.3998915743002481 77637.764412960183453 1247156.1972913768310
8 1760.2485042097784968 18829.052334178552758 285474.20654850401533 5423869.9597014869631
9 4685.9023162918237050 57600.716340522523798 1008432.9506590528288 22201293.939743630952
10 12417.403239568002677 173324.21633191405061 3450900.8811683331178 86641778.653884117489
11 32897.780017066145091 514450.09422679607285 11508712.418722055563 325332157.49685048174
12 86884.987650751268743 1509919.6022647962218 37570398.804037029475 1183310452.1936542300
13 229424.66023796502223 4389267.7826683406013 120463565.05045829114 4190401181.7453112798
14 604434.19630362500628 12656102.176997207352 380359458.94391796446 14504931859.074136829
15 1592166.9939650416411 36234119.703394609364 1185138499.8785854689 49231114687.307644210
16 4186778.2089201191352 103100174.19850927716 3650157580.5925683557 164257098550.90866386
17 11008100.036706697979 291755921.33251277078 11128154630.539032580 539841179613.24402666
18 28904025.427069749972 821639224.91959656471 33620312241.342947618 1750686524137.2717781
19 75884596.302083003892 2303832207.2589619187 100754983048.94595013 5610143692354.6457755
20 199011100.35574405792 6434727599.1288912159

i Xa X6 Xs X10
0 —0.2765773264173367185 0.6159505110893571460 —2.9991913236448423261 25.639540414004216349

1 —3.4054446789491065718 15.965825500576724169 —131.09722874868945636 1673.3057480542363748

2 —24.570159964990933901 209.17712832988124972 —2673.1181642081994199 48487.693538927944393
3 —139.04496175368819963 1941.9314061871553985 —36418.744278635469309 903571.05878070985095
4 —676.69722203050291907 14481.161465713991310 —381670.70958440882592 12572456.840428388939

5 —2980.2850555040833295 92716.594093707793992 —3318236.6956045245656 141625856.39478899275

6 —12201.170328998898251 530071.30088368454939 —25054434.002489226202 1357653370.1441467390

7 —47288.798001661947371 2776591.5196504503986 — 169364792.32951428214 11451941832.665412740
8 —175521.23292975181789 13563137.626324266820 —1047051748.2193837515 87035901992.179110029

9 —629296.76861756838811 62579486.626554750976 —6012877960.8045829709 606512902870.52199480

10 —2192523.1579334804197 275333754.56012219662 — 32454249850.587780052 3927249840355.5223369

11 —7458569.3308517637566 1163638939.7290930525 —166147643973.94469398 23876098793430.398990

12 —24861185.382016374834 4751112394.9532757501 —812614050679.29384404 137426012654323.52351

13 —81432521.735317351753 18826990715.719661290 —3819167751639.5573175 753928052790611.90171

14 —262699929.49158922336 72675832066.845002904 —17330670355620.376973 3964188356224407.7875

15 —836235938.80657455801 274128146369.26786810 — 76232334051550.698537 20070120847424617.843

16 —2630659142.3082426455 1012932475761.7342902 —326121067148253.92416

17 —8189047799.9075180970 3674558299661.5473376

18 —25252383565.446882139

from them. As in Ref[8], we also considered IA’s where the
polynomial associated with the highest derivativef @f) is
even, i.e., it is a polynomial in?. We will denote them by
b, IA’s. This ensures that iX. is a singularity of an approx-
imant, then—x. is also a singular point.

parameter®,q,e introduced abovéwhen the value ot is

defective approximantgpassing the testA21)], ands is the
number of seemingly good approximants which are excluded
because their results are very far from the other approxi-
mants;| —s is the number of “good” approximants used in

the analysis; note tha<<l, andl —s is never too small. We
In Table XX we present the results for some values of thfound the IA2 analysis to give the most stable results, espe-

cially with respect to the change of the number of terms of

not explicitly shown it means that the corresponding con-the series considered. Therefore, we consider the IA2 results

straint was not implementgdWe quote the “ratio of ap-
proximants” Rp, (I —s)/t, wheret is the total number of
approximants in the given set, is the number of non-

to be the most reliable. Moreover, IA1’s are not completely
satisfactory in reproducing the antiferromagnetic singularity
when its presence is not biased. In the biased analyses where
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the value ofg., the error is reported as a sum: the first term is related to the spread of the approximants at the centralB¢aluehidé
the second one is related to the uncertainty of the valye.adnd it is estimated by varying. .

af

Approx. 7zapp Be Y Y
A=0, \,=1.08 |A2q:2’p:0 (78—2)/85 0.3760702) 1.2371736) —-1.07)
IA3 4=2p=0 (62—1)/65 0.376069@1) 1.2371337) -1.003)
bafIASQ:Z’p:O (63—1)/65 0.376070@.8) 1.2371930) —0.90310)
Ae=0, \y=1.10 Aly—3p-0 30/37 0.37509427) 1.2368442) -0.93)
Al 4—3p=0s=10-2 (26—1)/37 0.3750958.8) 1.2369926) —0.778)
Al 4—3p=0s=10"3 1/37 0.3750956 1.23701 —-0.81
b 1Al q=3p=0 (24—2)/37 0.375093#6) 1.2367369) —-0.88711)
1A2 q=2,p=0 (78—-2)/85 0.3750978.8) 1.2373429) —-1.0(6)
|A2q=2,p:0,s=10*2 (69—-1)/85 0.37509741) 1.2373335) -0.92)
|A2q=2,p=0,e=10*3 16/85 0.3750978.9) 1.23735%31) —0.904)
b 1A2 q=2p=0 (54—-1)/85 0.375098@81) 1.2375346) —0.90618)
A2 —2p=1 (151-3)/165 0.37509746) 1.2373139) —-1.05)
A2 4—2p=1,=10"3 25/165 0.3750974.6) 1.23735%25) —0.9013)
A3 4=2p=0 (62—1)/65 0.375097(1) 1.2372836) —-1.05)
|A3q:2,p:0,s:10’3 21/65 0.3750983.2) 1.2374919) —-0.922)
b A3 q=2,p=0 (63—1)/65 0.375097@.8) 1.2373430) —0.90211)
|A3q:2,p:1 (99-3)/100 0.375095(65) 1.2370498) -1.04)
bBEACIAl q=3p=0 38/48 0.375096@) [20] 1.237187+7)
bB(’;"CIAzq:Z,p:O (114-3)/115 0.375096@) [20] 1.237202+7)
stEACIAZ q=2p=0 (90—2)/100 0.375096@) [20] 1.237193+7)
biﬁ?CIAS q=2p=0 (61—-1)/63 0.375096@) [20] 1.237198+7)
Ae=0, \y=1.12 I1A24-2p-0 (77—-2)/185 0.374120Q.6) 1.2374826) —1.0(6)
A3 4=2p=0 (62—1)/65 0.3741191) 1.2374236) -1.003)
baflAquz’p:O (62—1)/65 0.374120Q7) 1.2374729) —0.9049)
Ne=1, \,=1.86 |A2q:2,p:0 (82—3)/85 0.43076082) 1.2367630) —-1.15)
Ne=1, A\y,=1.90 IAly=3p=0 37/37 0.42697281) 1.236311) -0.75)
bafIAlq:gyp:O (29—-1)/37 0.42697¢7) 1.23639) —0.890116)
|A2q=2,p=0 (83—2)/85 0.426977@4) 1.2371134) —1.05)
A2 4—2p=0s=10"3 23/85 0.426977@2) 1.2371045) —0.9013)
b 1A2 q=2p=0 (69—2)/85 0.426979@1B2) 123725%48) —0.90316)
IA2 4= 2p=1 (156—4)/165 0.426977[B2) 1.2370742) —-0.95)
A2 4= 2p=1,=10"3 31/165 0.426977B0) 1.2370841) —0.894)
1A 4=2p=0 (63—1)/65 0.426978@4) 1.2371438) -1.09)
baf|A3q:2p:O (63—1)/65 0.426978@5) 1.2371936) —0.90610)
Ne=1, N\y=1.94 |A2q:2,p:0 (82—3)/85 0.423260@1) 1.2373830) -1.19
spin-1,D=0.633 |A2q:21p:0 (82—4)/85 0.38450687) 1.2368334) -1.11.2
bafIAZq:zyp:O (73—4)/85 0.384507@.7) 1.2369825) —0.90512)
spin-1,D=0.641 bafIAlng’p:O (30— 3)/37 0.385663¢11) 1.23636) —0.887111)
IA2 4—2p-0 (73—2)/85 0.385668(B3) 1.2367438) —0.3863) —-0.94)
A2 4= 2p=0s=10"3 (37—-2)/85 0.3856688.7) 1.2367823) —0.386@3) —0.8773)
baf|A2q:2’p:o (73—4)/85 0.385669(1.6) 1.2368725) —0.90512
IA2 4=2p=1 (146—-3)/165 0.385666®3) 1.23655%69) —0.38510) -1.2(2.0
1A3 q=2,p=0 (62—5)/65 0.385668@6) 1.2367858) —0.3854) —-1.15)
baflAquzyp:O (61—-2)/65 0.385668@398) 1.2367360) —0.91113
spin-1,D=0.649 |A2q:21p:0 (82—3)/85 0.386836632) 1.2366036) —0.3867) -1.2(1.0
baf|A2q:21p:0 (73—4)/85 0.386837({.6) 1.2367624) —0.90512)

B. is forced, 1A1's, IA2’s, and 1A3’s give almost equivalent combining the results of the A2 and 1A3 analygeslecting
results. the results denoted by 142;,-0, balA2q-2p-0,

The results are quite stable, and the value/$iis always IA3 4=2p=0, and b,dA3,-,,-0) we obtain the following
consistent with + «=0.89. From the results of Table XX, estimates:
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TABLE XXI. Results of the analysis of the 19th-order IHT series §ot3. Rappis explained in the text. The error is reported as a sum
of two terms. The first term is related to the spread of the approximants at the central vgewhile the second one is related to the
uncertainty of the value o8, and it is estimated by varying. .

Approx. Rapp v Y
Ne=0, \,=1.08 bs,IA2 4=2p-0 (54—2)/70 0.6300&2+11)
Ng=0, A\4=1.10 b, IALg-3p0 35/37 0.63012+10)
bs A2 _sp-o 51/70 0.630163+9)
b, IA2 g=2p-0 (53—3)/55 0.63016+10) —0.895)
bs,IA3q=2p-0 28/35 0.6300@14+10)
by A2 4-2p-1 (86— 4)/132 0.63016+9)
bghelA2 4 2p-0 (47-2)/55 0.630123+3)
Ne=0, Ay=1.12 by A2 4-2p0 (49— 2)/70 0.6302(3+9)
Ne=1, Ns=1.86 by, IA24-1p-0 (60— 1)/70 0.62976L+11)
Ne=1, A,=1.90 by IALq—3p-0 34/37 0.6300(2-+12)
by A2 g=2p-0 (61— 2)/70 0.63008+11)
b, IA2 g—5p0 (55—2)/55 0.630087+11) —0.8716)
bg,IA2 4-2p-1 (113-4)/132 0.63008+10)
by JA3 4-2p-0 (27-1)/34 0.62986L7+14)
Ne=1, A,=1.94 by 1A 4-2p0 (55— 2)/70 0.6302@2+11)
spin-1, D=0.633 by IA2 4-2p0 (67—1)/70 0.6299@+13)
spin-1, D=0.641 bﬂclAlq:S,p:o 33/37 0.62986%+15)
by, IA2 4-2p0 (66— 1)/70 0.6299@+13)
by IA3 =290 24/35 0.6298(12+19)
spin-1, D=0.649 by A2 420 (66—1)/70 0.62982+13)

series ofé?/B and employed biased integral approximants
(bﬁclA)- For instance, biased I1A2’s can be obtained from the

for N\g=0, X,=1.10, (A22) solutions of the equation

B.=0.375007814), y=1.2373224)

B.=0.426978018), y=1.2371226) (1=x/B)Po(X)f"(x) + Py(x) " (X) + Po(x)f(x)+R(x)=0.

(A26)

for Ag=1, A,=1.90, (A23) In this case we considered the approximants satisfying the

conditions
and
my+m;+my+k+3=n—p,
=0.385668820), =1.2368030
Be 80, v 230 max{|(n—p—3)/4]—q,2]<m,,m;,my.k

for spin-1, D=0.641. (A24) <[(n—p—23)/4]+q,

(A27)

Also also into account the uncertainty aff and D*, we

arrive at the estimates of Table Ill. Notice that the value ofyyhere, as beforem, andk are the orders of the polynomials
Bc at A 4=1.10 andhg=0 is in agreement with the Monte p. and R respectively. We also tried doubly biased 1A2

Carlo estimate of Ref20], i.e., B,=0.3750966(4)(where (b. 5 IA2) where also a singularity at 3. is forced using
according to the author the error does not include possiblg e .

; . . olutions of the equation
systematic errojs From the analysis of the antiferromag-
netic singularity using thd.JA’s we obtain the following (1—X2/,8§)P2(x)f”(x)+Pl(x)f’(x)+Po(x)f(x)+R(x)
estimate fora:

=0. (A28)
a=0.10510), (A25)

In Table XXI we report the results of some of the analy-
which is in good agreement with the much more preciseses we performed. In the case of theg IA2 analysis we
estimate(4.5) obtained assuming hyperscaling. also report the exponent at the antiferromagnetic singularity

In order to determine from the analysis of the HT series which turned out to be always consistent with-&. The
of £2, we followed the suggestion of RéB8], i.e., to use the error of v is given as a sum of two terms: the first one is
estimate of3. derived from the analysis gf in order to bias computed from the spread of the approximants3gi the
the analysis of the series gf. We analyzed the 19th-order second one is related to the uncertaintygof
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TABLE XXII. Results for % obtained using the CPRMa) applied to&? and y (20 orders; (b) applied
to £2/8 and y (19 orders. Rappis explained in the text.

Approx. Rapp nv
Ne=0, \,=1.08 (@ bIA2 4250 (95-1)/115 0.0227413)
(b) BIA24-5p-0 38/70 0.0229¢8)
Ne=0, \4=1.10 (@ bIA2 o 5p_g 95/115 0.0228014)
(@ bIA2 g5y (150 1)/185 0.0228(16)
(@) bIA34—2p0 (47-1)/61 0.0228(37)
(b) BIAL _ 3,0 28/37 0.0230(8)
(b) bIA2 5 ,-0 36/70 0.023008)
(b) b|A2q:2’p:1 86/132 0.02304.2)
(b) b|A3q:2’p:O 31/34 0.0231@122)
Ne=0, A\;=1.12 (@ bIA2 4250 97/115 0.02288.5)
(b) BIA24-5p-0 35/70 0.023060)
Ne=1, \s=1.86 (@ bIA2 o 5p_g (94— 5)/115 0.02267L2)
(b) bIA24—2p—0 39/70 0.0228612)
Ne=1, \;=1.90 (@) bIA2 4o (90—2)/115 0.02278.2)
(b) bIAZ 4_ 5 37/70 0.02296L1)
Ne=1, N\;=1.94 (@ bIA24-2p0 (92— 2)/115 0.02288L3)
(b) blAZqZZ’pZO 32/70 0.0231210)
spin-1,D=0.633 (@) bIA2 4550 (84—1)/115 0.0229240)
(b) b|A2q:2’p:0 36/70 0.0231682)
spin-1,D=0.641 (@ bIA2 4250 (85-2)/115 0.0228810)
(b) BIA24-5p—0 37/70 0.023122)
spin-1,D=0.649 (@ bIA2 4 5p_g (84—1)/115 0.0228843)
(b) BIA2 4 2p—0 37170 0.0230%22)
We quote as our final estimates: and E(x)=3,ex'~(xo—X) "¢, one constructs a new series

F(x)=2(d;/e)x". The functionF(x) is singular atx=1
v=0.6301%12) for Ae=0, A,=110, (A29) . itory—.1 behaves ab(x)~(1—x)", wr?ere¢:1+5
_ _ _ — €. Therefore, the analysis df(x) provides an unbiased
v=06300813 for Ag=1, A,=1.90, (A30) estimate of the difference between ?he critical exponents of
and the two functionsD(x) and E(x). The seried(x) may be
analyzed by employing biased approximants with a singular-
r=0.6299015) for spin-1, D=0.641. (A31) ity at x;=1. In order to check for possible systematic errors,
o ) we applied the CPRM to the series ¥ 3 andy (analyzing
Also taking into account the uncertainty ®f andD*, we  he corresponding 19th-order sejiesd to the series of?
arrive at the estimates of Table Ill. We mention that unbiasegq y (analyzing the corresponding 20th-order serié¥e
IA analys_es of 'Fhe 19th series ¢f/3 give consistent but sed IA’s biased ak.=1. In Table XXIl we present the
less precise estimates B [cf. Eqgs.(A22) and(A23)] and  results of the analysis for some values of the parameggrs
V. ) We obtain »»=0.02294(20) atAg=0 and A\,=1.1, nv
As a check of our results, we performed a biased analysis 0.02287(20) at A\g=1 and A,=1.9, and zv
of x and ¢ at \g=0 and\,=1.10, using the valugg, =0.02305(20) for spin-1 an®=0.641. Taking again into

=0.3750966(4) obtained in R¢20] by Monte Carlo simu-  4ccount the uncertainty off and D* we then obtain the
lations based on finite-size scaling techniques. Although thegtimate reported in Table III.

author of Ref[20] says that the error 0. does not include

systematic errors, we used it as a check and fos&  oyhonenis. It was applied to the 18th-order seriesyaf?/ 8
Tables XX and XX) y=1.23720(2+7) andv=0.63012(3 414, /8. The results are displayed in Table XXIIIl. We
+3) (the first error is related to the spread of the approxi-q (}v=0.0134(8) for \g=0 and A\,=1.1, ov

mants qtﬁc=0.3750966 and t_he seco_nd one Fo the error on_ 0.0134(9) forg=1 and\ 4= 1.9, andov=0.0127(6) for
Bc), which are perfectly consistent with our final esumatesspin_l atD =0.641.
reported in Table IIl.

In order to obtain an estimate af without using the
scaling relationy=(2— n)v, we employed the so-called
critical-point renormalization metho@PRM). The idea of In the following we describe the analysis we employed in
the CPRM is that from two serid3(x) andE(x) which are  order to evaluate universal ratios of amplitudes, sucb,as
singular at the same point, D(x)==;d;x' ~(xo—X) ° Iy, andc;, from the corresponding HT series. In the case of

The CPRM was also employed in order to estimate the

4. Ratios of amplitudes
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TABLE XXIIl. Results for o obtained using the CPRM appliedr, / 8 andq, o/ 8 (18 order$. Here we
USedXpmin="0.9, Xmax=1.1, Xmax=0.1. Rappis €xplained in the text.

Approx. Rapp ov
Ne=0, \,=1.08 bIA2 - 150 29/34 0.013¢8)
Ae=0, \,=1.10 bIA2 - 10 29/34 0.013¢8)
bIA2 4—2p—0 53/62 0.0138L0)
)\520, )\4:112 bIAZq:l,DZO 28/34 0013&)
)\6:1, )\4:186 bIAZq:l,pZO 29/34 0013&)
Ne=1, \4=1.90 bIA24—1p-0 29/34 0.0136)
bIA2 - 2p-0 52/62 0.013212)
Ne=1, \,=1.94 bIA2 - 150 28/34 0.01389)
spin-1,D=0.633 bIA2 - 150 21/34 0.01275)
spin-1,D=0.641 bIA2 - 10 21/34 0.01275)
bIA24— -0 37/62 0.01285)
spin-1,D=0.649 bIA2 4—1p0 21/34 0.01266)
g, C,, C3, andc, we analyzed the serigg®?g,=>! a8, PA’s. We considered defective DPA’s with spurious singu-
B 4c,=3Rap, B 3c;=3P,ap, and B 2%, larities in the rectangle Withmin=0, Xma=1.01 andypay

=313 a;8'. In order to obtain estimates of the universal =0.1; cf. Eq.(A21).
critical limit of g4, r;, andc;, we evaluated the approxi-  (3) [my/mo/k] IAl's given by Eg. (A16). The off-
mants of the corresponding HT series@t (as determined diagonality parameter was fixed to bge=3, andp=1. Our
from the analysis of the magnetic susceptibjlitgnd multi-  final estimate is the average of the valuegsatof all non-
plied by the appropriate power ¢ . defective approximants listed above. The error we quote is
For annth-order series we considered three sets of apthe standard deviation of the results. We considered defec-
proximants: PadapproximantgPA’s), Dlog-Padeapproxi-  tive 1A1l's with spurious singularities in the rectangle and
mants (DPA’s), and first-order integral approximants Xmin=0, Xma—=1.001, andy,,,=0.1.
(IALl's). As in the case of the critical exponents, sometimes we
(D) [I/m] PA’s with also eliminated seemingly good approximants whose results
were very far from the average of the other approximants. In
|+m=n-2, (A32)  order to arrive at a final estimate, the results from PA’s,
DPA’s, and IA’s were then combined, also taking into ac-
max{ n/2—q,4]<I, m=n/2+q, (A33) count the relative number of nondefective approximabés
fore combining the results we divided the apparent error of
wherel,m are the orders of the polynomials, respectively, in€ach set of approximants by the square root of the ratio be-
the numerator and denominator of the PA. The paramgter tween _the number of nondefective and the total number of
determines the degree of off-diagonality allowed. The besfPProximants Of course, all of the above procedure used to
approximants should be those that are diagonal or quasidftve ata final estimate is rather subjective. But we believe
agonal. So we considered PA’s selected usipg3. Our it prowdes regsonable estimates of the quantity at hand and
final estimate from the PA’s is the average of the values aPf itS uncertainty. We report in Table XXIV the results of
B. of the nondefective approximants using all the availablef@Cch Set of approximants so that the readers can judge the
terms of the series and satisfying the conditi@83) with rellab!llty of our flnz_al estimates. The secor_1d error in the
q=2. The error we quote is the standard deviation of thecomblned estimate is related to the uncertainty of the value
results from all the nondefective approximants listed above®f Az and D*; it is estimated by varying., in the range
We considered defective PA’s with spurious singularities in1-08—1.12 forhg=0, 1.86-1.94 forA¢=1, andD in the
the rectangle defined in EgA21) with X,;;=0.9 (X;,=0  range 0.633-0.649 for the spin-1 model. Errors due to the

only in the case 0f 10), Xmax=1.01, andy .= 0.1. uncertainty ofg; are negligible. .
(2) [I/m] DPA’s with We have also performed analyses of the serieg,ofor

Ne=0 and several values of, by employing the Roskies
transform[11]. The idea of the Roskies transfolRT) is to
perform biased analyses that take into account the leading
(A34) confluent singularity. For the Ising model, whete=1/2,
max(n—1)12—q,4<l, ms(n—1)/2+q, one replaces the variabfg in the original expansion with a
new variablez, defined by +z=(1— B/B.)Y2 If the origi-
wherel,m are the orders of the polynomials, respectively, innal series has square-root scaling correction terms, the trans-
the numerator and denominator of the PA of the series of itformed series has analytic correction terms, which can be
logarithmic derivative. We again fixeq=3. The estimate handled by standard PA’s or DPA’s. Note that in principle
with the corresponding error is obtained as in the case ofAl’s should be able to detect the first nonanalytic correction

l+m=n-2,
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TABLE XXIV. Results of PA, DPA, and IAl analyses of the seriesdgr, r,;, andc; . When results are not reported, it means that for
that quantity no acceptable results were obtained from that class of approximants. The fraction subscript is the number of nondefective
approximants over the total number of approximants. The last column contains the estimates obtained by combining the three classes of

approximants.

PA DPA IA1 Combined
gz )\6: O, )\4: 1.10 2350&30) 17/21 2349125) 16/18 2350418) 49/73 2349&164‘ 20)
Ne=1, Ay,=1.90 23.48745) 172 23.47446) 1715 23.49824) 775 23.49121+40)
spin-1,D =0.641 23.486L9) 50101 23.49289) 1715 23.49152) 5375 23.48718+20)
re )\GIO, )\4: 1.10 2051_1.3) 19/21 205&12) 11/18 2.04&7)32/73 205](7+2)
)\6: 1, )\4: 1.90 205212) 18/21 206314) 11/18 204&4) 33/73 205Q5+4)
spin-1,D=0.641 2.049855) 20121 2.046124) 1618 2.045616) 23173 2.0462+3)
rs =0, \4=1.10 2.249) 1718 2.2X13) 1721 2.235) 3760 2.235+4)
Ne=1, A\4=1.90 2.2811) 18118 2.239) 1721 2.235) 36160 2.235+6)
spin-1,D=0.641 2.408) 1618 2.315) 17121 2.4213) 26/69 2.345+3)
r'o Ne=0, A,=1.10 —14(5) 15121 —13.31.3 6561 —144+0)
Ne=1, A4=1.90 —14(5) 14121 —12(4) 10561 —13(5+0)
spin-1,D =0.641 —10(21) 1321 4(36) 14761 —8(25+0)
1O4C2 )\620, )\4: 1.10 _35818) 15/15 _358(129) 12/12 _358624) 24/33 _358174‘6)
)\6: 1, )\4: 1.90 - 35747) 14/15 - 357426) 12/12 - 358538) 24/33 - 35747+ 20)
spin-1,D=0.641 —3.57012) 15115 —3.56236) 11/12 —3.55428) 55/33 —3.56811+4)
104(:3 )\6: O, )\4: 1.10 008-(8) 12/15 0080:10) 3/12 00847) 26/36 00856“1‘ 0)
)\6: 1, )\4: 1.90 00865) 11/15 007&12) 2/12 00865) 26/36 00864“1‘0)
spin-1,D=0.641 0.09614) 1415 0.10012) 51, 0.0904) 30736 0.0904+0)

TABLE XXV. Details of the analysis of the 17th-order series for®%g,(8) with and without the use of the RT for some values\gf
andAg=0. In the PA, DPA, and IA analyses with RT we usget 2 (other approximants turned out to be much less sjable fixed
Xmin=0, Xmax= 1.1, andy .= 0.25 for PA and DPA, and,;;=0, Xya= 1.01, andy,,,,= 0.25 for IA. In order to perform a homogeneous
comparison, we used the same procedure for the direct analysis witho{ex@&pt that we user,,,=1.01 andy,=0.1). The fraction
subscript is the number of nondefective approximants over the total number of approximants.

WA PA DPA 1A Combined
0.5 direct 22.6558) 10/15 22.4316) g1, 22.5519) 1937 22.4815)
RT 23.7827)g15 23.4825) g1, 23.2950) 15/37 23.56293)
0.7 direct 23.088) 19/15 22.9214) g1, 22.9513) 1537 22.9412)
RT 23.6231) 1315 23.5426) /1 23.3535) 1737 23.5420)
1.0 direct 23.583) g/15 23.406) g/1» 23.3819) 1537 23.417)
RT 23.5627) 1315 23.5115g/12 23.4521) 1437 23.5514)
1.1 direct 23.5004) 1515 23.49123) 1112 23.49416) 1737 23.49316)
RT 23.5622) 1315 23.5916) g1 23.4417) 1437 23.5513
1.2 direct 23.6%) 10515 23.6139) 11/12 23.6129) 5037 23.6138)
RT 23.5620) 1315 23.5434) 1112 23.4316) 1937 23.5215)
1.5 direct 23.9%%) 14/15 23.926) 7/1» 23.934)
2.0 direct 24.1428) 1515 24.0117) 31 24.159) 31/37 24.159)
RT 23.6122) 1515 23.5218) 1012 23.4412) 1737 23.5012
3.0 direct 24.4R14) 1515 24.1439) /1 24.4Q19) 1537 24.4012)
RT 23.6123) 14115 23.4714) 1112 23.3418) 1437 23.4811)
o0 direct 24.7810) 15/15 24.5719) 1012 24.81(16) /37 24.759)
RT 23.5920) 1315 23.4717) 1012 23.4816) 1337 23.5010)
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to scaling, but they probably need many more terms of thavhereg(#6) is the solution of the first-order differential equa-
series, and practically need to be explicitly biased as in théion

case of PA’s and DPA's. Indeed the IA1 results without the
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RT turn out to be substantially equivalent to those obtained (1—6%)g’(8)+2(2—a)6g(6)=(1—6°+2B6%)h(0)

using PA’s and DPA's. In Table XXV we report the details
of the analysis without and with the RT for some values of
N4, andhg=0. These results are plotted in Fig. 1.

APPENDIX B: UNIVERSAL RATIOS OF AMPLITUDES
1. Notations

Universal ratios of amplitudes characterize the behavior
in the critical domain of thermodynamical quantities that do
not depend on the normalizations of the extel(ead., mag-
netic) field, order parametefe.g., magnetization and tem-
perature. Amplitude ratios of zero-momentum quantities can
be derived from the critical equation of state. We consider
several amplitudes derived from the singular behavior of the
specific heat,

Cy=A"|t|", (B1)
the magnetic susceptibility,
x=C*t|"7, (B2)

the spontaneous magnetization on the coexistence curve, Using the above formulas one can then calculate the univer-

h
X 1= TRIG(6), Ga0)=
0

(B11)

that is regular a¥=1. One may also write

2B66h(6)+(1—6*)h’(0)
(1- 6°+2B6%)

(B12)
x= 2R 27 gy(0),
0
(1-6%)g5(60) +2y69,(6)
0)=— , B13
W - rape O
m
Xa=13 RT3 g,(6),
0
(1 62)94(0) —2(2+ B) 6g3(0)
9a(6) = J3 v+ B)693 (B14)

92(6)(1— 67 +2B6%)

sal ratios of amplitudes:

M=BJt|~, (B3)

the zero-momentum connectaepoint correlation functions,
Xn=Cq [t 777 (722, (B4)

We complete our list of amplitudes by considering the
second-moment correlation length
g=1=t 7, (B5)

and the true(on-shel) correlation length, describing the
large-distance behavior of the two-point function,

Eqap= Tgadtl -

One can also define amplitudes along the critical isotherm,
e.g.,

(B6)

x=COH|" 75, (B7)
E=1C|H| VA2, (B8)
Egap= fgadHI 7%, (B9)

2. Universal ratios of amplitudes from the parametric
representation

In the following we report the expressions of the universal
ratios of amplitudes in terms of the parametric representation
(7.5 of the critical equation of state.

The singular part of the free energy per unit volume can
be written as

F=hymoR% %g(6), (B10)

— A+ _/pn2 2—a g(O)
U0=A—,—(t90—1) 9(6y)’ (B15)
_ C+ _ 2 _ g2(0)
U2=F—(9o_1) ygz(ﬂo)' (B16)
_ CI _ 2 -3y-28 g4(0)
Us= C, =(6—1)"° 92000 (B17)

aA*Ct N
Ri=—F7—=—a(l-a)(2-a)(95—1)*0;°9(0),
(B18)
R=AC Re B19
c = BZ - UOU21 ( )
C;B ,
Vsstz_(c——)z:_eogz(ao) gs(6p), (B20)
c,B?
V= (é—f)?, +3v5= 0302(60)*[392( 60) 93( )
—04(60)], (B21)
C,B?
Ryj=- (C—+)‘§:|Z°|2’ (B22)
P B! 2 6-1
S =R, .= 20—1_70_h1, B23
Q; X(écc)g(o) o ~h(1), (B23)



PRE 60 IMPROVED HIGH-TEMPERATURE EXPANSION AND ... 3557

Fo=limz °F(2)=p'~°h(1). (B24) oz_z oz (L1 286
o %_I—), %—Z 5"’ _21_0 . (CS)

Using Eq.(7.7) one can comput&(z) and obtain the small-

: 7 : 2 Moreover, it is trivial to show that
z expansion coefficients of the effective potentig} in

terms of thg critical exponents and the coefficiemigs, ; of FEO(p,0) t 1 1 ah®(p, )
the expansion oh(#6). ————=FWO(p,0)| -+ ,
ap P hO(p,0) I
(C6)
APPENDIX C: APPROXIMATION SCHEME FOR THE ~
(1) (t)
PARAMETRIC REPRESENTATION OF THE EQUATION é”:—(p'a):]i(t)(pyg)( 2('8+72)0+ L oh (p’e))_
OF STATE BASED ON STATIONARITY a0 1-6 hW(p,0) 90
(C7)

The parametric form of the critical equation of state, de-
scribed by Eqs(7.5), (7.6), and(7.7), shows a formal depen- Substitution of these expressions into EG3) leads to the

dence on the auxiliary parameter following form of the global stationarity condition:
However all physically relevant amplitude ratios are inde- hO(p.0)

pendent ofp, because they may be expressed in terms of the 21 (t 2 P,

invariant functionF (z) and its derivatives, evaluated at such [1-(1+29) 8]0 O(p, ) +[1+(28-1)6]p ap

special values of asz=0, z=«~ and z=zj,, whereF(zp) h®

=0. Notice that, despite the apparent dependence generated —[1-¢?] 03 (p,9) -0. (C8)

by the relatiorzy=z(p, 6y(p)), from the definition it follows a0

thatzy must necessarily be independentpof
We can exploit these facts to set up an approximatio _
procedure in which the function(p, 6), entering the scaling POWers of¢:

-t us now write dowh®(p, #) as a power series in the odd

equation of state, is truncated to some simgfEiynomia) t—1
function h((p, ) and the value of is properly fixed to hO(p, )= 0+ S hyn . 1(p) 62", (C9)
optimize the approximation. n=1

We found that, at any given order in the truncation, it is ) ] ) -
possible and convenient to chogsedn such a way that all 1he series-expanded stationarity condition then takes the

the (truncatedl universal amplitude ratios are simultaneously form
stationary against infinitesimal variations gfitself.

t—1
; (1) ; J J
Starting fromhY(p, #) we may reconstruct the function nz Hp%_Zn My 1(p) + (Zﬁ—l)p%
- h®(p,6
F(t)(p,H)ZLZp). (C1 .
(1— 2)B+7 —2y+2n=2|hyn_1(p) | 6271=0,  (C10

In order that all truncated amplitudes be simultaneously sta- ith th tiorh. =1
tionary in p, it is necessary that the functioR®(p,z)  Wh the conventiorn, = 1.

_E® b i ith L ; Let us now note that in the absence of truncations the
=F"(p,0(p,z)) be stationary with respect to variationsf 51,56 equation must be identically true, since the original
for any value ofz

hall hat f | il . function F(z) is totally independent op. This fact implies
(t)\Ne shall prove that for any polynomial truncation a4 the coefficients of the above power-series expansion
h™(p,0) itis possible to find a valug,, independent oz, st vanish individually, and this gives us an infinite set of

such that recursive differential equations for the functiohg, ., 1(p),
IFO(p,2) which must be automatically satisfied when the coefficients
_— =0, (C2 h,,+1(p) are properly defined.
ap p=py A truncation corresponds to arbitrarily suppressing all co-
efficients starting fromh,,, 1(p). Hence, the global station-
a property which we shall term “global stationarity.” arity condition simply amounts to requiring
In order to prove our statement, let us rephrase the above
condition into the form d
{ (28— 1)P(9_ —2y+2t— 2} h2t—l(P)] g*"1=0,
FOp0) FOp0 00 . ’ (11
op a6 o» because all other terms vanish. The resulting equation can be
where the implicit function theorem allows us to write solved by choosing, such that the term in curly brackets
vanishes, independent éf This concludes our proof.
a0 dzl dp The effectiveness of this scheme is beautifully illustrated
5= : (€4 py its lowest-order implementati ding to the so-
dp 92196 y its lowest-order implementation, corresponding to the so

called “linear parametric model,” in the context of the three-
The definitions(7.6) and (7.7) imply dimensional Ising model.
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Let us truncate the exact scaling functibfp, 8) to its
cubic approximation

h®(p,0)=6+hs(p) 6, (C12

where hs(p) is taken from Eq(7.13. Substitutinghs into
the stationarity conditiofC11) for t=2, we find

1
3(2B=1p*=2y(1=7)=0, (C13
which leads to
[6y(y—1)
=\/— C14
p2 v—2p (C14

The truncated scaling function vanishes at the valye
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cientsF,, ., for n=t, in terms of lower-order coefficients.
This is a natural consequence of having included by the pa-
rametrization some information on the asymptotic behavior
of F(z) for largez In practice, we observe that eaEh,, ;
appears first in the coefficiefiit,,, 1, in the form of a free
constant of integration in the solution of the recursive differ-
ential equation relatindp,, ., to h,,_4. Since a truncation
corresponds to setting,, . ;=0 starting fromn=t, this fixes

the (truncated value of allF,,,, ; starting fromF,;, ;.

As an important consequence of this mechanism, we ob-
serve that truncated models deviate from the exact solution
only in proportion to the difference between exact and pre-
dicted coefficients, and this difference may be quite small
even for very low-order truncations.

In order to turn the above considerations into quantitative
estimates, we need to gain further insight into the properties
of the functionsh,,. 1(p), especially in the vicinity of the
stationary poinfp,. To this end we introduce the expansion

1 y—2B
= . C1
ha(po)  ¥(1-2B) (€15 n
honta(p)= mE:O Cn,mp2m|:2m+1 .

HOE -

In this approximation the scaling equation of state turns (C19

out to be expressible simply in terms of the critical expo-

nentsB and y. As a consequence, all the universal ratiosSubstituting this expansion as an ansatz into the recursive
may then be approximated to lowest order by appropriatelifferential equations, we check thBt,,,; act as free pa-
algebraic combinations of the critical exponents. rameters(integration constantswhile the coefficient, ,

The above results reproduce the old formulas bymust obey the following algebraic recursive equations:
Schofield, Lister, and Hf25], who obtained expressions for
critical amplitudes in terms of critical exponents from a
minimum condition imposed on the predictions extracted
from a parametric scaling equation of state. for all n>m, subject to the initial conditionsy,, ,=1. It is

In the case of the linear parametric model, the global napossible to find a closed-form solution to EG:20),
ture of the stationarity property introduced by the above au-
thors was shown by Wallace and Zia7], who adopted a
slightly different, but essentially equivalent, formulation of
the above model.

As we showed above, global stationarity can be impose@ut for our purposes the recursive equations will sometimes
on parametric models regardless of the linearity constraintse more useful than their explicit solutions.

The next truncation, corresponding te=3, can also be Let us define the coefficients of theexpansion of the
treated analytically. Our starting point will be truncated scaling function evaluated at the stationary point:

(n— m)Cn,m: [(26—1)m—y+n— 1]Cnfl,m (C20

n—m

H (2Bm—y+k—1),  (C21)

Cn.m= (n—m)! i

h®)(p,0)=6+h3(p) 6>+ hs(p) 6°. (C16

|:(t)(pt 73+ E |:(tr)T1+ Z2m+1 (C22
The coefficientsh®)(p) and h®)(p) are reported in Egs.
(7.13 and (7.14. By applying the stationarity condition

(C1)) to hs(p), we obtain

\/ty 2B)(1-y+2pB)

By definition, F(Z%H coincides with its exact valug,, ;
for all m<t, while for m=t it is determined by the condition
homt 1(p1) =0, which, according to Eq.C19), implies

12(48—y)Fs n
o _
o1 \/1_ 72(2— ) y(y— 1)(4,8—7)F5)1’2 mZ: Compi Fomi1=0 (C23
(y=2B)*(1—y+2B)*
c1 for all n=t.
(C17 We can now prove the following lemma:
The truncated scaling function vanishes witetakes the N
value 6y, which is now given by the relation
0 " ? y - 2 MGy mp"Fh =0 (C24
,  ha(ps _ Ahs(ps)
60_2h5(P3)\ h3(p3) 1) (€18 oids for alln=t.

The proof is by induction. Let us assume the lemma to
A general feature of truncated parametric models is thdwold for a given valuen; then, as a consequence of Egs.
possibility of making a prediction about higher-order coeffi- (C24) and (C23), we obtain
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1 dip

n
2, [(28=1)m=y+n]cympi"Fiy.1=0. (C29 Foi=gm

m 2D (C33

Notice that the above equation also holds for the initial valugypich completes our analysis of the linear parametric model.
n=t—1, since in that case it coincides with the global sta-  one may also show thaiF, is related to the variation of

tionarity condition. _ , _ p; by the (linearized relation
By use of the recursion equatiofi§20) we now obtain
n 1_2,8
SF=—— m2C 2(m—t—1)F 2 2 )
S (LM =0 (€20 T 2B i M e 2wt (Prea= i)
Mm=0 (C34

Because of the factom@* 1—m), the sum can trivially be

Our numerical estimates, presented in Table XlI, show that
extended up tm+ 1, hence

pZ.1—p?is indeed small £0.01).

n+1 n+1 In order to evaluate amplitude ratios, as shown in Appen-
(”+1)2 Cn+1,mPt2mF(2t31+1: E an+1,mpt2mF(2tr)n+1. dix B, we must also reconstruct the functiog$d) and
m=0 m=1 g,(6), by solving Eqs(B11) and(B12), respectively. These

(€27 functions may be expanded in even powergpWith coef-

: - ficients that are functions ¢f satisfying the same differential
The Ihs vanishes by definitigref. Eq. (C23)], hence the rhs .
vanishes and the p)r/oof is cgmplet(i:d(. )] equations a#,,, 1, Egs.(C10. One may show that, for any

The above lemma is instrumental in evaluating the differ-9'Ven truncatiorh™(p, 6) and arbitrary values s,

ence between the predictions originated by two subsequent 0
truncations. By applying once more the definitiorFéf)nH, 9(p,6)= E z Comp? M L 2mtll pon+2
one can easily show that 2m+2
n +A(1-6%)%F, (C3H

2 Cn, m[Pt+1 F(ztr:j)l_ (ztr)n+1)+(Pt+1 m)F2m+1] 0 ) ) ) ) o
m=0 whereA is an integration constant reflecting the arbitrariness
(C28 in the zero-field value of the free energy. One may also show

for all n>t. Let us now expand the equation to first order inthat forn=t

ihe gitff-erencepfﬂ—pf, and make explicit use of the lemma n FO) =
0 obtain 2m ' 2m
J’_
m§=:0 Cnmp 2m+2 (n+1)| ]._.[ (Zﬁ Y= k)
(C36
2 Cp, mp (Ztr:;jrl?l._ (Ztr)n+1) 0 (C29
where the terms on the rhs are the coefficients of the Taylor

for all n>t. It is crucial thatF& D) —F® =0 for all m expansion for (+ #%)?#*7. As a consequence the constant
<t. me mr may always be chosen such thgif)(p,6) is truncated to

2t . .
The equation we obtained allows us to expresihin the ~ O(¢~) for any arbitrary choice op.

. . . . )
approximation all differencesF& Y —F® in terms of In turn, one may also prove that, for ah{’(p, 6),
the single quantity o n
(t) _ 2m + (1) 2n
5FtEF2t+l_F(2tt)+1' (C30 gz'(p,0) ngo mEZO Chmp1(2M 1)F2m+1]9 .
C3
Knowledge of thec, ,, and some ingenuity lead to the ex- (37
plicit solution of Eq.(C29): Now, according to Eqs(C23 and (C24), when we choose
for p the globally stationary valug,, the coefficients in
1) () SF+ (c3p  SQuare brackets vanish for al=t. As a consequence, for

=t >, . )
amrl MM 2= any t the valuep, insures the truncation of$’(p;,6) to

O(6%2). Thus a unique feature gf, is the simultaneous
where, for allm>t, and consistent truncation of 6) andg,(6).
Notice that we might start by imposing a global station-
arity condition directly on a truncategh(p, #), obtaining a
(m—t)! o1 (2Bt=v) kﬂl (2pm=y=k), different stationary value fgs, and make use of EgB12) in
(C32  order to reconstruct the correspondihg¢). However, in
this case, sincé(#) must be an odd function o, there is
and obviouslyd; (=1. no arbitrary integration constatwhich is physically a trivial
As a corollary to this result, by comparing E¢C29 consequence of the definition of a reduced temperpamd
whent=1 to Eq.(C24) whent=2, we may write down a thereforeh(6) cannot be truncated. The resulting parametric
closed-form expression for ai{?), , coefficients m=1): model is mathematically consistent, but in practice unappeal-

(_1)m—t m—t—1

dim=



3560 CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI PRE 60

ing, because the calculation 6f from the equatiorh(6,) n+1
=0 and the evaluation of universal amplitude ratios becomes 2 mcn+1ymp§mF2m+1=O(e”“), (C49
quite cumbersome. =1

The above described formalism can be usefully employed i i . )
in the context of thes expansion of the critical equation of thus completing the proof. Along the same lines it is straight-
state. Comparison witle expansion results will also shed forward to prove that, for alh=2,
further light on the meaning and relevance of the results
derived by the prescription of global stationarity.

Our starting point will be the result of Wallace and Zia
[27], who showed that, when appropriate conditions are im-
posed on the zeroth-order approximation, the parametrigor all integersk<n. The initial condition a=Kk) is trivially
form of the critical equation of state is automatically trun- satisfied for alln=2:
cated in the powers of? when expanded in the parameter
e=4—d. For easier comparison, note that the parambter n
introduced by Schofielf24] and used by Wallace and Zia is > MCh mPs™F ome 1= O(€). (C46)
the same as oué,, and the variable change frody to p m=1
poses no conceptual problem.

In our reformulation, one may state that, within tke
expansion, it is possible to choose to lowest order a vajue nil
in such a way that, expanding the parametric equation of han+1(p)=O(e™) (Y
state in# and e, one finds, for alhn=2,

n

mZ:1 kan,mpng2m+1:O(€n_k+l) (045)

As a consequence, the more general statement

holds for allp admitting ane expansion and possessing the
hon+1(po)=0(e" ), (C3g  limit lim._op=po.
This relation implies, in turn, that, by expanding érthe
and this property should survive the replacemppt>p,  coefficientsF,,, . 1 for m=2 according to

+0O(e).
As a first application of our formalism, we can verify the ” )
consistency of the above statements by checking that, for all F2m+1:k2 f ke’ (C48
n=2, the condition -1
n when thef ,,, for m<k are known, then aff,,, for m=k are
> ComPa™F omy 1 =0(e"* 1) (c39 fully determined.
m=0 As a simple application of the above, we obtained the
o following closed-form result:
implies
n ( - 1)m -2 . ’)’_ 1
f1=———>po " lim—, C49
2, MG mpg"Foms1=O(€"). (C40 ™o mm-1Fe T e 49
The proof is by induction. Assuming the property to hold for Wherey=1+ z€ and po= \/z- . _
a givenn, and exploiting the fact that 2—1=0(e), we Let us now consider the linear parametric model with glo-
obtain bal stationarity in the context of theexpansionp, satisfies

the conditionp,=py+ O(€), though it does not coincide
n (and is not expected tavith the e-expandeg value adopted
> [(2B—1)M—y+n1Cn mps" F om+1=0(" ). by Guida and Zinn-Justif23].
m=0 (can Now note that for any higher-order truncation the station-
arity condition is still solved byp;=py+O(€), as shown
The initial condition, corresponding to the case 1, has the ~ explicitly by the above-derived E¢C41). As a consequence,
explicit form any stationary truncation is an accurate description of the
e-expanded parametric equation of state upCife') in-
1 cluded. Actually, the freedom to choogeleaves such an
y=D+ 528~ 7)po=0(e?), (C42 expansion high)lly underdetermined, and$|?nany other prescrip-
tions might work, including that of fixing (or, alternatively,
and is a definition ofp,. Notice thatpy=Ilim._op,, and in  g,) to its zeroth-order value. It is, however, certainly pleas-
the Ising modebgzz. ant to recognize that our approach based on stationarity falls
By applying the recursion equations we then obtain naturally into the set of consistent truncations. As a side
remark, note that all the coefficients of teexpansion o,
om B N will, in general, be changed order by ordettjmnd will also,
m§=:o (N+1-m)Cri1mpy Fomr1=0(e"). (C43 general, be complex numbers. This fact will by no means
affect the real character of the expanded physical amplitudes,
The sum can trivially be extended o+ 1 and, recalling the and will not even prevens and 6, from taking real values in
hypothesis, we obtain the actual three-dimensional calculations.

n
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